SGSNet: a lightweight deep learning model for strawberry growth stage detection

阶段(地层学) 深度学习 计算机科学 人工智能 生物 古生物学
作者
Zhiyu Li,Jianping Wang,Guohong Gao,Yayan Lei,Chenping Zhao,Yan Wang,Haofan Bai,Yuqing Liu,Xiaojuan Guo,Qian Li
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fpls.2024.1491706
摘要

Introduction Detecting strawberry growth stages is crucial for optimizing production management. Precise monitoring enables farmers to adjust management strategies based on the specific growth needs of strawberries, thereby improving yield and quality. However, dense planting patterns and complex environments within greenhouses present challenges for accurately detecting growth stages. Traditional methods that rely on large-scale equipment are impractical in confined spaces. Thus, the development of lightweight detection technologies suitable for portable devices has become essential. Methods This paper presents SGSNet, a lightweight deep learning model designed for the fast and accurate detection of various strawberry growth stages. A comprehensive dataset covering the entire strawberry growth cycle is constructed to serve as the foundation for model training and testing. An innovative lightweight convolutional neural network, named GrowthNet, is designed as the backbone of SGSNet, facilitating efficient feature extraction while significantly reducing model parameters and computational complexity. The DySample adaptive upsampling structure is employed to dynamically adjust sampling point locations, thereby enhancing the detection capability for objects at different scales. The RepNCSPELAN4 module is optimized with the iRMB lightweight attention mechanism to achieve efficient multi-scale feature fusion, significantly improving the accuracy of detecting small targets from long-distance images. Finally, the Inner-IoU optimization loss function is applied to accelerate model convergence and enhance detection accuracy. Results Testing results indicate that SGSNet performs exceptionally well across key metrics, achieving 98.83% precision, 99.45% recall, 99.14% F1 score, 99.50% mAP@0.5, and a loss value of 0.3534. It surpasses popular models such as Faster R-CNN, YOLOv10, and RT-DETR. Furthermore, SGSNet has a computational cost of only 14.7 GFLOPs and a parameter count as low as 5.86 million, demonstrating an effective balance between high performance and resource efficiency. Discussion Lightweight deep learning model SGSNet not only exceeds the mainstream model in detection accuracy, but also greatly reduces the need for computing resources and is suitable for portable devices. In the future, the model can be extended to detect the growth stage of other crops, further advancing smart agricultural management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助眯眯眼的老五采纳,获得10
刚刚
Akim应助momo采纳,获得10
1秒前
1秒前
2秒前
汉堡包应助书雪采纳,获得10
2秒前
BAEKHYUNLUCKY发布了新的文献求助10
2秒前
故笺完成签到,获得积分10
2秒前
科研通AI6应助飞飞采纳,获得10
3秒前
4秒前
Georges-09发布了新的文献求助10
4秒前
微笑柜子关注了科研通微信公众号
4秒前
烟花应助典雅的俊驰采纳,获得10
5秒前
朴素的月光完成签到,获得积分10
5秒前
小豆发布了新的文献求助10
6秒前
陈新完成签到,获得积分10
6秒前
酷波er应助浮浮世世采纳,获得10
6秒前
小书包完成签到,获得积分10
6秒前
故笺发布了新的文献求助10
7秒前
7秒前
科研通AI6应助大方的凌波采纳,获得10
7秒前
Sisyphus完成签到,获得积分10
8秒前
MIAAAO完成签到,获得积分10
8秒前
小蛇玩发布了新的文献求助10
8秒前
科研人发布了新的文献求助10
8秒前
科研通AI2S应助zsy采纳,获得10
8秒前
科研通AI6应助进步采纳,获得10
9秒前
10秒前
科研通AI2S应助zifeimo采纳,获得10
10秒前
满满完成签到 ,获得积分10
11秒前
11秒前
科研通AI6应助简单的幻儿采纳,获得10
11秒前
11秒前
宸5931完成签到,获得积分10
12秒前
12秒前
12秒前
CDN完成签到,获得积分20
13秒前
英俊的铭应助快乐采纳,获得10
13秒前
虚幻双双发布了新的文献求助10
13秒前
Blank完成签到,获得积分10
13秒前
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646