亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SGSNet: a lightweight deep learning model for strawberry growth stage detection

阶段(地层学) 深度学习 计算机科学 人工智能 生物 古生物学
作者
Zhiyu Li,Jianping Wang,Guohong Gao,Yayan Lei,Chenping Zhao,Yan Wang,Haofan Bai,Yuqing Liu,Xiaojuan Guo,Qian Li
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fpls.2024.1491706
摘要

Introduction Detecting strawberry growth stages is crucial for optimizing production management. Precise monitoring enables farmers to adjust management strategies based on the specific growth needs of strawberries, thereby improving yield and quality. However, dense planting patterns and complex environments within greenhouses present challenges for accurately detecting growth stages. Traditional methods that rely on large-scale equipment are impractical in confined spaces. Thus, the development of lightweight detection technologies suitable for portable devices has become essential. Methods This paper presents SGSNet, a lightweight deep learning model designed for the fast and accurate detection of various strawberry growth stages. A comprehensive dataset covering the entire strawberry growth cycle is constructed to serve as the foundation for model training and testing. An innovative lightweight convolutional neural network, named GrowthNet, is designed as the backbone of SGSNet, facilitating efficient feature extraction while significantly reducing model parameters and computational complexity. The DySample adaptive upsampling structure is employed to dynamically adjust sampling point locations, thereby enhancing the detection capability for objects at different scales. The RepNCSPELAN4 module is optimized with the iRMB lightweight attention mechanism to achieve efficient multi-scale feature fusion, significantly improving the accuracy of detecting small targets from long-distance images. Finally, the Inner-IoU optimization loss function is applied to accelerate model convergence and enhance detection accuracy. Results Testing results indicate that SGSNet performs exceptionally well across key metrics, achieving 98.83% precision, 99.45% recall, 99.14% F1 score, 99.50% mAP@0.5, and a loss value of 0.3534. It surpasses popular models such as Faster R-CNN, YOLOv10, and RT-DETR. Furthermore, SGSNet has a computational cost of only 14.7 GFLOPs and a parameter count as low as 5.86 million, demonstrating an effective balance between high performance and resource efficiency. Discussion Lightweight deep learning model SGSNet not only exceeds the mainstream model in detection accuracy, but also greatly reduces the need for computing resources and is suitable for portable devices. In the future, the model can be extended to detect the growth stage of other crops, further advancing smart agricultural management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
15秒前
21秒前
Rondab应助firesquall采纳,获得10
22秒前
24秒前
40秒前
量子星尘发布了新的文献求助10
41秒前
CMY发布了新的文献求助10
46秒前
杨涵完成签到 ,获得积分10
51秒前
1分钟前
RAIN发布了新的文献求助10
1分钟前
1分钟前
海绵宝宝抓水母完成签到,获得积分10
1分钟前
平淡的快乐完成签到,获得积分10
1分钟前
JamesPei应助平淡的快乐采纳,获得10
1分钟前
在水一方应助CMY采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
冬去春来完成签到 ,获得积分10
2分钟前
2分钟前
CMY发布了新的文献求助10
2分钟前
姜忆霜完成签到 ,获得积分10
2分钟前
小蘑菇应助葛力采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
葛力发布了新的文献求助10
3分钟前
彩色的紫丝完成签到 ,获得积分10
3分钟前
fangyifang完成签到,获得积分10
3分钟前
xxx完成签到,获得积分20
3分钟前
3分钟前
3分钟前
xxx发布了新的文献求助20
3分钟前
Tethys完成签到 ,获得积分10
3分钟前
3分钟前
Akim应助大方研究生采纳,获得10
3分钟前
3分钟前
孙雁哝发布了新的文献求助10
3分钟前
yx_cheng应助科研通管家采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
Orange应助qyn1234566采纳,获得10
4分钟前
小飞飞发布了新的文献求助10
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008109
求助须知:如何正确求助?哪些是违规求助? 3547893
关于积分的说明 11298611
捐赠科研通 3282850
什么是DOI,文献DOI怎么找? 1810216
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188