SGSNet: a lightweight deep learning model for strawberry growth stage detection

阶段(地层学) 深度学习 计算机科学 人工智能 生物 古生物学
作者
Zhiyu Li,Jianping Wang,Guohong Gao,Yayan Lei,Chenping Zhao,Yan Wang,Haofan Bai,Yuqing Liu,Xiaojuan Guo,Qian Li
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fpls.2024.1491706
摘要

Introduction Detecting strawberry growth stages is crucial for optimizing production management. Precise monitoring enables farmers to adjust management strategies based on the specific growth needs of strawberries, thereby improving yield and quality. However, dense planting patterns and complex environments within greenhouses present challenges for accurately detecting growth stages. Traditional methods that rely on large-scale equipment are impractical in confined spaces. Thus, the development of lightweight detection technologies suitable for portable devices has become essential. Methods This paper presents SGSNet, a lightweight deep learning model designed for the fast and accurate detection of various strawberry growth stages. A comprehensive dataset covering the entire strawberry growth cycle is constructed to serve as the foundation for model training and testing. An innovative lightweight convolutional neural network, named GrowthNet, is designed as the backbone of SGSNet, facilitating efficient feature extraction while significantly reducing model parameters and computational complexity. The DySample adaptive upsampling structure is employed to dynamically adjust sampling point locations, thereby enhancing the detection capability for objects at different scales. The RepNCSPELAN4 module is optimized with the iRMB lightweight attention mechanism to achieve efficient multi-scale feature fusion, significantly improving the accuracy of detecting small targets from long-distance images. Finally, the Inner-IoU optimization loss function is applied to accelerate model convergence and enhance detection accuracy. Results Testing results indicate that SGSNet performs exceptionally well across key metrics, achieving 98.83% precision, 99.45% recall, 99.14% F1 score, 99.50% mAP@0.5, and a loss value of 0.3534. It surpasses popular models such as Faster R-CNN, YOLOv10, and RT-DETR. Furthermore, SGSNet has a computational cost of only 14.7 GFLOPs and a parameter count as low as 5.86 million, demonstrating an effective balance between high performance and resource efficiency. Discussion Lightweight deep learning model SGSNet not only exceeds the mainstream model in detection accuracy, but also greatly reduces the need for computing resources and is suitable for portable devices. In the future, the model can be extended to detect the growth stage of other crops, further advancing smart agricultural management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文梦寒完成签到 ,获得积分10
4秒前
天天快乐应助hcq采纳,获得10
5秒前
5秒前
6秒前
海的呼唤发布了新的文献求助10
7秒前
7秒前
华仔应助neWA采纳,获得30
7秒前
XD完成签到,获得积分10
8秒前
在水一方应助暴躁的信封采纳,获得10
8秒前
8秒前
adagio发布了新的文献求助10
9秒前
hmhu发布了新的文献求助10
11秒前
苹果丑应助外向薯片采纳,获得40
12秒前
12秒前
熹任完成签到,获得积分10
13秒前
个木发布了新的文献求助10
13秒前
14秒前
14秒前
KKZNB发布了新的文献求助150
14秒前
萧笃完成签到,获得积分10
15秒前
黄志敏完成签到,获得积分10
16秒前
飘柔发布了新的文献求助10
16秒前
17秒前
17秒前
浮光完成签到,获得积分10
17秒前
17秒前
小马甲应助个木采纳,获得10
18秒前
18秒前
neWA发布了新的文献求助30
20秒前
熹任发布了新的文献求助30
20秒前
nn发布了新的文献求助10
20秒前
張医铄完成签到,获得积分10
22秒前
22秒前
23秒前
27秒前
翔嘉无敌完成签到,获得积分10
28秒前
原野发布了新的文献求助10
28秒前
Hammerdai完成签到,获得积分10
29秒前
30秒前
HHHAN发布了新的文献求助10
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258254
求助须知:如何正确求助?哪些是违规求助? 2900050
关于积分的说明 8308708
捐赠科研通 2569242
什么是DOI,文献DOI怎么找? 1395633
科研通“疑难数据库(出版商)”最低求助积分说明 653184
邀请新用户注册赠送积分活动 631084