亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A tale of too many trees: a conundrum for phylogenetic regression

系统发育树 系统发育比较方法 生物 特质 树(集合论) 树重组 进化生物学 系统发育学 生命之树(生物学) 比较法 回归 系统发育网络 生态学 计量经济学 统计 计算机科学 基因 遗传学 数学 语言学 数学分析 哲学 程序设计语言
作者
Richard H. Adams,Jenniffer Roa Lozano,Mataya Duncan,Jack E. Green,Raquel Assis,Michael DeGiorgio
出处
期刊:Molecular Biology and Evolution [Oxford University Press]
标识
DOI:10.1093/molbev/msaf032
摘要

Abstract Just exactly which tree(s) should we assume when testing evolutionary hypotheses? This question has plagued comparative biologists for decades. Though all phylogenetic comparative methods require input trees, we seldom know with certainty whether even a perfectly estimated tree (if this is possible in practice) is appropriate for our studied traits. Yet, we also know that phylogenetic conflict is ubiquitous in modern comparative biology, and we are still learning about its dangers when testing evolutionary hypotheses. Here we investigate the consequences of tree-trait mismatch for phylogenetic regression in the presence of gene tree-species tree conflict. Our simulation experiments reveal excessively high false positive rates for mismatched models with both small and large trees, simple and complex traits, and known and estimated phylogenies. In some cases, we find evidence of a directionality of error: assuming a species tree for traits that evolved according to a gene tree sometimes fares worse than the opposite. We also explored the impacts of tree choice using an expansive, cross-species gene expression dataset as an arguably “best-case” scenario in which one may have a better chance of matching tree with trait. Offering a potential path forward, we found promise in the application of a robust estimator as a potential, albeit imperfect, solution to some issues raised by tree mismatch. Collectively, our results emphasize the importance of careful study design for comparative methods, highlighting the need to fully appreciate the role of accurate and thoughtful phylogenetic modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
14秒前
25秒前
28秒前
文章多多发布了新的文献求助10
30秒前
科研通AI6应助曦耀采纳,获得10
34秒前
曦耀发布了新的文献求助10
41秒前
童严柯完成签到,获得积分10
44秒前
无极微光应助童严柯采纳,获得20
47秒前
Criminology34应助oleskarabach采纳,获得10
47秒前
Criminology34应助oleskarabach采纳,获得10
48秒前
Criminology34应助oleskarabach采纳,获得10
48秒前
58秒前
清脆语海发布了新的文献求助10
1分钟前
Hello应助清脆语海采纳,获得10
1分钟前
1分钟前
1分钟前
samchen完成签到,获得积分10
1分钟前
Jason发布了新的文献求助10
1分钟前
tomtion发布了新的文献求助10
1分钟前
ww完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
文章多多完成签到,获得积分10
2分钟前
Jason完成签到,获得积分10
2分钟前
Una完成签到,获得积分10
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
2分钟前
香菜张完成签到,获得积分10
2分钟前
席江海完成签到 ,获得积分10
2分钟前
2分钟前
曦耀发布了新的文献求助10
3分钟前
3分钟前
zhjl发布了新的文献求助10
3分钟前
wangfaqing942完成签到 ,获得积分10
3分钟前
3分钟前
c138zyx发布了新的文献求助10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639719
求助须知:如何正确求助?哪些是违规求助? 4749971
关于积分的说明 15007221
捐赠科研通 4797866
什么是DOI,文献DOI怎么找? 2563996
邀请新用户注册赠送积分活动 1522864
关于科研通互助平台的介绍 1482529