A tale of too many trees: a conundrum for phylogenetic regression

系统发育树 系统发育比较方法 生物 特质 树(集合论) 树重组 进化生物学 系统发育学 生命之树(生物学) 比较法 回归 系统发育网络 生态学 计量经济学 统计 计算机科学 基因 遗传学 数学 数学分析 语言学 哲学 程序设计语言
作者
Richard H. Adams,Jenniffer Roa Lozano,Mataya Duncan,Jack E. Green,Raquel Assis,Michael DeGiorgio
出处
期刊:Molecular Biology and Evolution [Oxford University Press]
标识
DOI:10.1093/molbev/msaf032
摘要

Abstract Just exactly which tree(s) should we assume when testing evolutionary hypotheses? This question has plagued comparative biologists for decades. Though all phylogenetic comparative methods require input trees, we seldom know with certainty whether even a perfectly estimated tree (if this is possible in practice) is appropriate for our studied traits. Yet, we also know that phylogenetic conflict is ubiquitous in modern comparative biology, and we are still learning about its dangers when testing evolutionary hypotheses. Here we investigate the consequences of tree-trait mismatch for phylogenetic regression in the presence of gene tree-species tree conflict. Our simulation experiments reveal excessively high false positive rates for mismatched models with both small and large trees, simple and complex traits, and known and estimated phylogenies. In some cases, we find evidence of a directionality of error: assuming a species tree for traits that evolved according to a gene tree sometimes fares worse than the opposite. We also explored the impacts of tree choice using an expansive, cross-species gene expression dataset as an arguably “best-case” scenario in which one may have a better chance of matching tree with trait. Offering a potential path forward, we found promise in the application of a robust estimator as a potential, albeit imperfect, solution to some issues raised by tree mismatch. Collectively, our results emphasize the importance of careful study design for comparative methods, highlighting the need to fully appreciate the role of accurate and thoughtful phylogenetic modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ying完成签到 ,获得积分10
1秒前
夜苍鹰完成签到 ,获得积分10
1秒前
2秒前
2秒前
Nana发布了新的文献求助10
2秒前
Akim应助asd采纳,获得30
2秒前
2秒前
4秒前
Liolsy发布了新的文献求助10
5秒前
隐形曼青应助独特一刀采纳,获得10
5秒前
Laus发布了新的文献求助10
5秒前
6秒前
丰富赛凤发布了新的文献求助10
6秒前
bkagyin应助科研柠檬精酸酸采纳,获得10
7秒前
科研通AI5应助刘清河采纳,获得10
9秒前
情怀应助Nana采纳,获得10
10秒前
李某完成签到 ,获得积分10
11秒前
绿柏完成签到 ,获得积分10
11秒前
强健的妙菱完成签到,获得积分10
12秒前
爱科研爱生活完成签到,获得积分10
12秒前
温柔大猩猩完成签到,获得积分10
12秒前
汉堡包应助丰富赛凤采纳,获得10
14秒前
干净的人达完成签到 ,获得积分10
15秒前
SciGPT应助Liolsy采纳,获得10
16秒前
阮绝悟发布了新的文献求助20
16秒前
17秒前
17秒前
HDrinnk发布了新的文献求助10
19秒前
Nana完成签到,获得积分10
19秒前
slycmd完成签到,获得积分10
19秒前
21秒前
21秒前
22秒前
22秒前
23秒前
清浅发布了新的文献求助10
24秒前
Metrix应助yzqsuper采纳,获得10
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512265
求助须知:如何正确求助?哪些是违规求助? 3094716
关于积分的说明 9224334
捐赠科研通 2789516
什么是DOI,文献DOI怎么找? 1530724
邀请新用户注册赠送积分活动 711092
科研通“疑难数据库(出版商)”最低求助积分说明 706551