Electrocardiography-based artificial intelligence predicts the upcoming future of heart failure with mildly reduced ejection fraction

射血分数 医学 心力衰竭 内科学 心脏病学 QRS波群 心电图 接收机工作特性 置信区间
作者
Dae-Young Kim,Sang‐Won Lee,Dong‐Ho Lee,Sang-Chul Lee,Ji-Hun Jang,Sung‐Hee Shin,Dae-Hyeok Kim,Wonik Choi,Sang Weon Park
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media]
卷期号:12
标识
DOI:10.3389/fcvm.2025.1418914
摘要

Background Heart failure with mildly reduced ejection fraction (HFmrEF) has emerged as the predominant subtype of heart failure (HF). This study aimed to develop artificial intelligence (AI)-electrocardiography (ECG) to identify and predict the prognosis of patients with HFmrEF. Methods We collected 104,336 12-lead ECG datasets from April 2009 to December 2021 in a tertiary centre. The AI-ECG encompasses a novel model that combines an automatic labelling preprocessing method with a transformer architecture incorporating a triplet loss for HFmrEF analysis. Results The receiver operating characteristic analyses revealed that the area under the curve of AI-ECG for identifying all types of HF was acceptable [0.873, 95% confidence interval (CI): 0.864–0.893], while that for identifying patients with HFmrEF was relatively lower (0.824, 95% CI: 0.794–0.863) than that for those with HF with reduced ejection fraction (EF) (0.875, 95% CI: 0.844–0.912) and those with normal EF (0.870, 95% CI: 0.842–0.894). The analysis of ECG features showed significant increases in QRS duration ( p = 0.001), QT interval ( p = 0.045), and corrected QT interval ( p = 0.041) with increasing “Severity by Euclidean distance”. Following the predictability analysis with another group of 953 patients for improvements of follow-up EF in HFmrEF, the patients were grouped into three clusters based on the AI-Euclidean distance; Cluster 1 had the most severe cases and poorer outcomes than Clusters 2 ( p < 0.001) and 3 ( p < 0.001). Conclusions AI-ECG presents an innovative approach for the prognostic stratification of cardiac contractility in patients with HFmrEF. In patients with HFmrEF, disease progression can be predicted using AI-ECG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
zhzzhz应助张钰婷啦啦啦采纳,获得10
3秒前
Air完成签到,获得积分10
3秒前
5秒前
喵喵大王完成签到,获得积分10
6秒前
Silence发布了新的文献求助10
9秒前
9秒前
SYLH应助喵喵大王采纳,获得10
10秒前
完美麦片完成签到,获得积分10
11秒前
栗子完成签到,获得积分10
12秒前
LLLEe完成签到,获得积分10
13秒前
13秒前
17秒前
科研通AI5应助WOLF采纳,获得10
18秒前
庞_发布了新的文献求助10
18秒前
23秒前
23秒前
23秒前
SYLH应助阿北采纳,获得10
25秒前
小熊完成签到,获得积分10
26秒前
Godzilla发布了新的文献求助10
26秒前
新八发布了新的文献求助10
28秒前
28秒前
Jasper应助庞_采纳,获得10
28秒前
29秒前
myth完成签到,获得积分10
29秒前
30秒前
31秒前
碧蓝皮卡丘完成签到,获得积分10
32秒前
baolongzhan完成签到,获得积分10
33秒前
搜集达人应助科研通管家采纳,获得10
33秒前
Ava应助科研通管家采纳,获得10
33秒前
在水一方应助科研通管家采纳,获得10
33秒前
wu应助科研通管家采纳,获得10
34秒前
科研通AI5应助科研通管家采纳,获得30
34秒前
小二郎应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
34秒前
年少有你应助科研通管家采纳,获得10
34秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772623
求助须知:如何正确求助?哪些是违规求助? 3318167
关于积分的说明 10189220
捐赠科研通 3033061
什么是DOI,文献DOI怎么找? 1664029
邀请新用户注册赠送积分活动 796055
科研通“疑难数据库(出版商)”最低求助积分说明 757184