CBKG-DTI: Multi-Level Knowledge Distillation and Biomedical Knowledge Graph for Drug-Target Interaction Prediction

计算机科学 知识图 人工智能 图形 图论 机器学习 数据挖掘 理论计算机科学 数学 组合数学
作者
Xiaosa Zhao,Qixian Wang,Ye Zhang,Chenglong He,Minghao Yin,Xiaowei Zhao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2024.3500027
摘要

The prediction of drug-target interactions (DTIs) has emerged as a vital step in drug discovery. Recently, biomedical knowledge graph enables the utilization of multi-omics resources for modelling complex biological systems and further improves overall performance of specific predictive task. However, due to the scale and generalization of biomedical knowledge graph, it is necessary to capture task-specific knowledge from biomedical knowledge graph for DTI prediction. Moreover, although biomedical knowledge graph has rich interactions between biological entities, there still needs to contain unignorable structural information of drugs or targets in the multi-modal fusion manner. To this end, we develop a novel DTI identification framework, CBKG-DTI, which aims to distill task-specific knowledge from the complex knowledge graph to the lightweight DTI prediction model. Specifically, CBKG-DTI first introduces a hierarchy-aware knowledge graph embedding as teacher model to capture semantic hierarchy information of biomedical knowledge graph. Then, to further improve model performance, CBKG-DTI integrates information from multiple aspects such as relational information and structural information by constructing a heterogeneous network and then employs a heterogeneous graph attention network framework as the lightweight student model. Moreover, we design a multi-level distillation mechanism to improve the representation and prediction ability of the lightweight student model via capturing the representation and logit distribution of the teacher model. Finally, we conduct the extensive comparison experiments and can reach the AUC of 0.9751 and the AUPR of 0.6310 under 5-fold cross validation. This not only demonstrates the superiority of CBKG-DTI in DTI prediction, but also, more importantly, validate the effectiveness of the framework capturing task-specific knowledge from biomedical knowledge graph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐丽完成签到,获得积分10
刚刚
呆萌的毛衣完成签到,获得积分10
1秒前
酷波er应助焱垚采纳,获得10
1秒前
1秒前
Lucifer2012完成签到,获得积分10
1秒前
2秒前
2秒前
赵清持发布了新的文献求助10
3秒前
4秒前
怕黑黄豆完成签到,获得积分20
4秒前
苗条翠梅发布了新的文献求助10
5秒前
5秒前
Lucifer2012发布了新的文献求助10
6秒前
CipherSage应助重要的又亦采纳,获得10
6秒前
7秒前
科研通AI5应助kilion采纳,获得10
7秒前
科研通AI5应助hahhahahh采纳,获得10
8秒前
我是站长才怪应助ies77采纳,获得10
9秒前
特安谭发布了新的文献求助10
12秒前
JM发布了新的文献求助10
13秒前
14秒前
小朱发布了新的文献求助10
16秒前
Boren完成签到,获得积分10
16秒前
gyf完成签到,获得积分10
16秒前
18秒前
领导范儿应助何志广采纳,获得10
18秒前
完美世界应助1111采纳,获得10
20秒前
同心兆博发布了新的文献求助10
20秒前
YSL发布了新的文献求助10
21秒前
21秒前
大模型应助科研通管家采纳,获得10
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
乐乐应助科研通管家采纳,获得30
23秒前
HR112应助科研通管家采纳,获得10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
pluto应助科研通管家采纳,获得10
23秒前
打打应助科研通管家采纳,获得10
23秒前
pluto应助科研通管家采纳,获得10
23秒前
pluto应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
The Finite Element Method Its Basis and Fundamentals 2000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752764
求助须知:如何正确求助?哪些是违规求助? 3296329
关于积分的说明 10093416
捐赠科研通 3011181
什么是DOI,文献DOI怎么找? 1653629
邀请新用户注册赠送积分活动 788325
科研通“疑难数据库(出版商)”最低求助积分说明 752809