Adaptive learning engine for driving marketing channel performance: a machine learning approach

客户群 计算机科学 数字营销 营销 机器学习 收入 市场调研 人工智能 业务 会计
作者
Adeolu Dairo,Krisztián Szűcs
出处
期刊:Journal of Research in Interactive Marketing [Emerald Publishing Limited]
标识
DOI:10.1108/jrim-02-2024-0098
摘要

Purpose This paper aims to develop and implement a machine learning recommendation engine – an adaptive learning engine that drives business revenue through the ranking and recommendation of offers at a granular customer level across the inbound marketing channels. Design/methodology/approach A data set of over 300,000 unique sample of mobile customers was extracted and prepared. The gradient boosting machine (GBM) algorithm was developed, consolidated, deployed and experimented on two inbound marketing channels. Findings Research examining machine learning implementation and operationalisation within the large consumer base is seemingly silent. This paper bridges this gap by developing and implementing a machine learning adaptive engine across two inbound marketing channels. The performance of the inbound channels revealed the significant importance of digital campaigns that are driven by machine learning algorithms. Machine learning techniques can be well positioned as an integral part of a large consumer base marketing operations with real-time one-to-one marketing capability. Research limitations/implications The study explores the use of machine learning, a cutting-edge subset of artificial intelligence (AI), to drive consumer business revenue across different marketing channels. Further research should explore these marketing channels in greater depth by considering other branches of AI in driving consumer business revenue. Practical implications This study demonstrates the value, ease and application of a machine learning deployment in a consumer business with a large customer base in driving business revenue. It also shows customers' practical response to offerings across channels and the importance of the digital channel to firms with a large customer base. Originality/value The paper defines how machine learning extracts can be deployed and operationalised by marketers to drive business revenue. This approach is unique, realistic, easy to deploy and will guide future research in this space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王南晰完成签到 ,获得积分10
1秒前
fafachoi完成签到,获得积分10
3秒前
NexusExplorer应助zhx245259630采纳,获得10
3秒前
对对队发布了新的文献求助10
4秒前
Auston_zhong应助tianxiong采纳,获得10
4秒前
西猫发布了新的文献求助10
4秒前
酷炫便当完成签到 ,获得积分10
5秒前
科研通AI2S应助sdl采纳,获得10
5秒前
科研小民工应助飞鱼采纳,获得200
7秒前
7秒前
大壮发布了新的文献求助10
8秒前
10秒前
10秒前
哈哈哈哈嘻嘻嘻完成签到 ,获得积分10
13秒前
sdl发布了新的文献求助10
14秒前
Owen应助kkkkkoi采纳,获得10
15秒前
melody发布了新的文献求助30
15秒前
Amber完成签到,获得积分20
17秒前
21秒前
科研小民工应助tianxiong采纳,获得30
21秒前
21秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
共享精神应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
Solarenergy完成签到,获得积分0
26秒前
西大喜发布了新的文献求助10
26秒前
kkkkkoi发布了新的文献求助10
27秒前
成就的外套完成签到,获得积分10
28秒前
毛头侠发布了新的文献求助10
28秒前
Auston_zhong应助鱼鱼子999采纳,获得10
29秒前
77发布了新的文献求助10
30秒前
独见晓焉完成签到,获得积分10
30秒前
30秒前
31秒前
tianxiong发布了新的文献求助10
32秒前
ww完成签到,获得积分10
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730482
求助须知:如何正确求助?哪些是违规求助? 3275115
关于积分的说明 9991221
捐赠科研通 2990742
什么是DOI,文献DOI怎么找? 1641231
邀请新用户注册赠送积分活动 779622
科研通“疑难数据库(出版商)”最低求助积分说明 748331