Performance of higher-order networks in reconstructing sequential paths: from micro to macro scale

计算机科学 比例(比率) 订单(交换) 统计物理学 地图学 地理 经济 物理 财务 程序设计语言
作者
Kevin Teo,Naomi A. Arnold,Andrew N. W. Hone,István Z. Kiss
出处
期刊:Journal of Complex Networks [Oxford University Press]
卷期号:13 (1)
标识
DOI:10.1093/comnet/cnae050
摘要

Abstract Activities such as the movement of passengers and goods, the transfer of physical or digital assets, web navigation and even successive passes in football, result in timestamped paths through a physical or virtual network. The need to analyse such paths has produced a new modelling paradigm in the form of higher-order networks which are able to capture temporal and topological characteristics of sequential data. This has been complemented by sequence mining approaches, a key example being sequential motifs measuring the prevalence of recurrent subsequences. Previous work on higher-order networks has focused on how to identify the optimal order for a path dataset, where the order can be thought of as the number of steps of memory encoded in the model. In this article, we build on these approaches to consider which orders are necessary to reproduce different path characteristics, from path lengths to counts of sequential motifs, viewing paths generated from different higher-order models as null models which capture features of the data up to a certain order, and randomize otherwise. Furthermore, we provide an important extension to motif counting, whereby cases with self-loops, starting nodes and ending nodes of paths are taken into consideration. Conducting a thorough analysis using path lengths and sequential motifs on a diverse range of path datasets, we show that our approach can shed light on precisely where models of different order overperform or underperform, and what this may imply about the original path data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔完成签到,获得积分10
刚刚
mcsmdxs发布了新的文献求助10
刚刚
刚刚
多情曼凝发布了新的文献求助10
刚刚
Lorain发布了新的文献求助10
刚刚
1秒前
hihi发布了新的文献求助10
2秒前
轻松戎完成签到,获得积分10
3秒前
SyncMaster完成签到,获得积分10
3秒前
思源应助大力的无声采纳,获得10
4秒前
5秒前
小明完成签到,获得积分20
5秒前
含蓄翠风完成签到,获得积分10
6秒前
英姑应助一一采纳,获得10
6秒前
呼吸之野应助CRANE采纳,获得30
6秒前
田様应助saviour采纳,获得10
7秒前
Ashan发布了新的文献求助10
8秒前
黄同学发布了新的文献求助10
9秒前
渊崖曙春应助sunyafei采纳,获得30
11秒前
Martin完成签到 ,获得积分10
11秒前
阿卫完成签到,获得积分10
13秒前
飞飞完成签到,获得积分10
13秒前
15秒前
静谧180完成签到 ,获得积分10
16秒前
Geodada发布了新的文献求助10
17秒前
一步发布了新的文献求助10
19秒前
等待的花卷完成签到,获得积分10
19秒前
wang完成签到 ,获得积分10
20秒前
24秒前
树下的枫凉完成签到,获得积分10
26秒前
wanci应助Geodada采纳,获得10
26秒前
mawanyu发布了新的文献求助10
27秒前
乐666完成签到,获得积分10
28秒前
31秒前
徐福上完成签到 ,获得积分10
32秒前
慕青应助一步采纳,获得10
32秒前
32秒前
33秒前
丰富新儿完成签到,获得积分10
34秒前
Sky完成签到,获得积分10
35秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464176
求助须知:如何正确求助?哪些是违规求助? 3057496
关于积分的说明 9057440
捐赠科研通 2747573
什么是DOI,文献DOI怎么找? 1507413
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696068