deep-AMPpred: A Deep Learning Method for Identifying Antimicrobial Peptides and Their Functional Activities

深度学习 抗菌肽 人工智能 鉴定(生物学) 计算机科学 功能(生物学) 机器学习 计算生物学 生物 生物化学 植物 进化生物学
作者
Jun Zhao,Hangcheng Liu,Liang‐I Kang,W J Gao,Quan Lu,Yuan Rao,Zhenyu Yue
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01913
摘要

Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years. Although there are many machine learning-based AMP identification tools, most of them do not focus on or only focus on a few functional activities. Predicting the multiple activities of antimicrobial peptides can help discover candidate peptides with broad-spectrum antimicrobial ability. We propose a two-stage AMP predictor deep-AMPpred, in which the first stage distinguishes AMP from other peptides, and the second stage solves the multilabel problem of 13 common functional activities of AMP. deep-AMPpred combines the ESM-2 model to encode the features of AMP and integrates CNN, BiLSTM, and CBAM models to discover AMP and its functional activities. The ESM-2 model captures the global contextual features of the peptide sequence, while CNN, BiLSTM, and CBAM combine local feature extraction, long-term and short-term dependency modeling, and attention mechanisms to improve the performance of deep-AMPpred in AMP and its function prediction. Experimental results demonstrate that deep-AMPpred performs well in accurately identifying AMPs and predicting their functional activities. This confirms the effectiveness of using the ESM-2 model to capture meaningful peptide sequence features and integrating multiple deep learning models for AMP identification and activity prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助张皓123采纳,获得10
1秒前
聪慧雅旋完成签到 ,获得积分10
1秒前
起风了完成签到 ,获得积分10
2秒前
3秒前
3秒前
龙骑士25发布了新的文献求助10
3秒前
聪慧雅旋关注了科研通微信公众号
4秒前
学术通zzz应助ffffan采纳,获得10
5秒前
5秒前
科研通AI2S应助海不扬波采纳,获得10
6秒前
cocolu应助海不扬波采纳,获得10
6秒前
cocolu应助海不扬波采纳,获得10
6秒前
cocolu应助海不扬波采纳,获得10
6秒前
dddlrb完成签到,获得积分10
6秒前
小鱼发布了新的文献求助10
7秒前
欣慰汉堡发布了新的文献求助10
9秒前
dddlrb发布了新的文献求助10
9秒前
10秒前
10秒前
上官若男应助跋扈采纳,获得10
10秒前
今后应助敏er好学采纳,获得10
11秒前
11秒前
yhb发布了新的文献求助10
11秒前
fctlxazn关注了科研通微信公众号
12秒前
年轻水壶完成签到 ,获得积分10
12秒前
Lucas应助允怡采纳,获得10
13秒前
张皓123发布了新的文献求助10
14秒前
葵花籽完成签到,获得积分10
14秒前
15秒前
小谷发布了新的文献求助10
15秒前
15秒前
15秒前
情怀应助ardejiang采纳,获得10
16秒前
wang完成签到,获得积分10
17秒前
Hellowa发布了新的文献求助10
18秒前
Zhouzhou应助欣慰汉堡采纳,获得10
19秒前
19秒前
晚安鸭箫晓完成签到 ,获得积分10
20秒前
20秒前
20秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613