deep-AMPpred: A Deep Learning Method for Identifying Antimicrobial Peptides and Their Functional Activities

深度学习 抗菌肽 人工智能 鉴定(生物学) 计算机科学 功能(生物学) 机器学习 计算生物学 生物 生物化学 植物 进化生物学
作者
Jun Zhao,Hangcheng Liu,Liang‐I Kang,W J Gao,Quan Lu,Yuan Rao,Zhenyu Yue
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.jcim.4c01913
摘要

Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years. Although there are many machine learning-based AMP identification tools, most of them do not focus on or only focus on a few functional activities. Predicting the multiple activities of antimicrobial peptides can help discover candidate peptides with broad-spectrum antimicrobial ability. We propose a two-stage AMP predictor deep-AMPpred, in which the first stage distinguishes AMP from other peptides, and the second stage solves the multilabel problem of 13 common functional activities of AMP. deep-AMPpred combines the ESM-2 model to encode the features of AMP and integrates CNN, BiLSTM, and CBAM models to discover AMP and its functional activities. The ESM-2 model captures the global contextual features of the peptide sequence, while CNN, BiLSTM, and CBAM combine local feature extraction, long-term and short-term dependency modeling, and attention mechanisms to improve the performance of deep-AMPpred in AMP and its function prediction. Experimental results demonstrate that deep-AMPpred performs well in accurately identifying AMPs and predicting their functional activities. This confirms the effectiveness of using the ESM-2 model to capture meaningful peptide sequence features and integrating multiple deep learning models for AMP identification and activity prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
兴奋千兰发布了新的文献求助10
1秒前
1111完成签到,获得积分10
1秒前
1秒前
3秒前
传奇3应助LGLXQ采纳,获得10
4秒前
我是老大应助mmol采纳,获得10
5秒前
轻松的冥王星完成签到,获得积分10
5秒前
6秒前
刘晓静关注了科研通微信公众号
6秒前
BAI发布了新的文献求助10
6秒前
9秒前
只爱吃肠粉完成签到 ,获得积分10
9秒前
jolil关注了科研通微信公众号
10秒前
2041完成签到,获得积分10
12秒前
13秒前
13秒前
搜集达人应助卡卡采纳,获得10
14秒前
完美世界应助谷粱紫槐采纳,获得10
14秒前
16秒前
轻松不言发布了新的文献求助10
16秒前
16秒前
年轻的怀柔完成签到,获得积分10
18秒前
脑洞疼应助姜怡采纳,获得10
19秒前
19秒前
领导范儿应助焦头鹅采纳,获得10
20秒前
喵喵牛完成签到,获得积分10
20秒前
GYJ完成签到 ,获得积分10
21秒前
DoLaso完成签到,获得积分10
22秒前
NexusExplorer应助ttqql采纳,获得10
23秒前
24秒前
棖0921发布了新的文献求助10
25秒前
青禾发布了新的文献求助10
25秒前
科研通AI5应助冷傲的凡波采纳,获得10
25秒前
不秃头完成签到,获得积分10
25秒前
华仔应助半柚采纳,获得10
26秒前
27秒前
distinct发布了新的文献求助10
28秒前
桐桐应助墨川采纳,获得30
28秒前
红叶发布了新的文献求助10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737792
求助须知:如何正确求助?哪些是违规求助? 3281460
关于积分的说明 10025330
捐赠科研通 2998147
什么是DOI,文献DOI怎么找? 1645122
邀请新用户注册赠送积分活动 782547
科研通“疑难数据库(出版商)”最低求助积分说明 749835