已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MCNN-AAPT: accurate classification and functional prediction of amino acid and peptide transporters in secondary active transporters using protein language models and multi-window deep learning

运输机 计算生物学 机会之窗 氨基酸 计算机科学 人工智能 化学 生物化学 生物 基因 实时计算
作者
Muhammad Shahid Malik,Van The Le,Syed Muazzam Ali Shah,Yu‐Yen Ou
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:: 1-10
标识
DOI:10.1080/07391102.2024.2431664
摘要

Secondary active transporters play a crucial role in cellular physiology by facilitating the movement of molecules across cell membranes. Identifying the functional classes of these transporters, particularly amino acid and peptide transporters, is essential for understanding their involvement in various physiological processes and disease pathways, including cancer. This study aims to develop a robust computational framework that integrates pre-trained protein language models and deep learning techniques to classify amino acid and peptide transporters within the secondary active transporter (SAT) family and predict their functional association with solute carrier (SLC) proteins. The study leverages a comprehensive dataset of 448 secondary active transporters, including 36 solute carrier proteins, obtained from UniProt and the Transporter Classification Database (TCDB). Three state-of-the-art protein language models, ProtTrans, ESM-1b, and ESM-2, are evaluated within a deep learning neural network architecture that employs a multi-window scanning technique to capture local and global sequence patterns. The ProtTrans-based feature set demonstrates exceptional performance, achieving a classification accuracy of 98.21% with 87.32% sensitivity and 99.76% specificity for distinguishing amino acid and peptide transporters from other SATs. Furthermore, the model maintains strong predictive ability for SLC proteins, with an overall accuracy of 88.89% and a Matthews Correlation Coefficient (MCC) of 0.7750. This study showcases the power of integrating pre-trained protein language models and deep learning techniques for the functional classification of secondary active transporters and the prediction of associated solute carrier proteins. The findings have significant implications for drug development, disease research, and the broader understanding of cellular transport mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Misaki发布了新的文献求助10
2秒前
LZL完成签到 ,获得积分10
2秒前
黯然完成签到 ,获得积分10
3秒前
imkhun1021完成签到,获得积分10
3秒前
Misaki完成签到,获得积分10
8秒前
洪东智完成签到,获得积分10
9秒前
压缩完成签到 ,获得积分10
10秒前
充电宝应助yangon采纳,获得10
10秒前
spring完成签到 ,获得积分10
12秒前
儒雅的焦发布了新的文献求助10
12秒前
伊笙完成签到 ,获得积分10
13秒前
locker完成签到 ,获得积分10
14秒前
无畏完成签到,获得积分10
14秒前
16秒前
乐乐完成签到,获得积分10
17秒前
18秒前
Priscilla应助科研通管家采纳,获得10
18秒前
18秒前
Ava应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
杳鸢应助科研通管家采纳,获得100
19秒前
ding应助科研通管家采纳,获得10
19秒前
21秒前
zhong发布了新的文献求助10
23秒前
25秒前
25秒前
25秒前
完美世界应助yu采纳,获得10
28秒前
叮咚雨发布了新的文献求助10
30秒前
yangon发布了新的文献求助10
30秒前
科研通AI2S应助zhaojj采纳,获得10
30秒前
专注的开山完成签到,获得积分10
31秒前
万听白完成签到 ,获得积分10
34秒前
37秒前
39秒前
39秒前
洪东智发布了新的文献求助10
39秒前
科研通AI2S应助zhong采纳,获得10
40秒前
imkhun1021发布了新的文献求助10
41秒前
xiayu完成签到 ,获得积分10
41秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162149
求助须知:如何正确求助?哪些是违规求助? 2813236
关于积分的说明 7899361
捐赠科研通 2472473
什么是DOI,文献DOI怎么找? 1316444
科研通“疑难数据库(出版商)”最低求助积分说明 631317
版权声明 602142