Improved Prediction of Ligand–Protein Binding Affinities by Meta-modeling

亲缘关系 结合亲和力 化学 计算生物学 血浆蛋白结合 配体(生物化学) 立体化学 生物 生物化学 受体
作者
Ho‐Joon Lee,Prashant S. Emani,Mark Gerstein
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01116
摘要

The accurate screening of candidate drug ligands against target proteins through computational approaches is of prime interest to drug development efforts. Such virtual screening depends in part on methods to predict the binding affinity between ligands and proteins. Many computational models for binding affinity prediction have been developed, but with varying results across targets. Given that ensembling or meta-modeling approaches have shown great promise in reducing model-specific biases, we develop a framework to integrate published force-field-based empirical docking and sequence-based deep learning models. In building this framework, we evaluate many combinations of individual base models, training databases, and several meta-modeling approaches. We show that many of our meta-models significantly improve affinity predictions over base models. Our best meta-models achieve comparable performance to state-of-the-art deep learning tools exclusively based on 3D structures while allowing for improved database scalability and flexibility through the explicit inclusion of features such as physicochemical properties or molecular descriptors. We further demonstrate improved generalization capability by our models using a large-scale benchmark of affinity prediction as well as a virtual screening application benchmark. Overall, we demonstrate that diverse modeling approaches can be ensembled together to gain meaningful improvement in binding affinity prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
eily发布了新的文献求助100
1秒前
1秒前
欣喜板栗发布了新的文献求助10
2秒前
123完成签到,获得积分10
2秒前
2秒前
zy3637发布了新的文献求助10
2秒前
笨小孩完成签到,获得积分10
3秒前
3秒前
科目三应助萌萌哒瓢酱采纳,获得10
3秒前
jy发布了新的文献求助10
3秒前
Fei完成签到,获得积分10
3秒前
3秒前
4秒前
微昆界发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助悦耳紫霜采纳,获得10
5秒前
ParagonWe完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
粉蒸肉发布了新的文献求助10
6秒前
张变红给张变红的求助进行了留言
6秒前
wsj发布了新的文献求助10
6秒前
香蕉觅云应助任性凤凰采纳,获得10
7秒前
草莓布丁发布了新的文献求助10
8秒前
obaica完成签到,获得积分10
8秒前
8秒前
吴长森发布了新的文献求助10
8秒前
9秒前
9秒前
领导范儿应助微昆界采纳,获得10
9秒前
10秒前
10秒前
高小明发布了新的文献求助10
10秒前
11秒前
情怀应助zy3637采纳,获得10
11秒前
Owen应助老广采纳,获得10
12秒前
12秒前
12秒前
慕青应助安安静静的风车采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577053
求助须知:如何正确求助?哪些是违规求助? 4662311
关于积分的说明 14740828
捐赠科研通 4602926
什么是DOI,文献DOI怎么找? 2526046
邀请新用户注册赠送积分活动 1495963
关于科研通互助平台的介绍 1465478