Improved Prediction of Ligand–Protein Binding Affinities by Meta-modeling

亲缘关系 结合亲和力 化学 计算生物学 血浆蛋白结合 配体(生物化学) 立体化学 生物 生物化学 受体
作者
Ho‐Joon Lee,Prashant S. Emani,Mark Gerstein
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01116
摘要

The accurate screening of candidate drug ligands against target proteins through computational approaches is of prime interest to drug development efforts. Such virtual screening depends in part on methods to predict the binding affinity between ligands and proteins. Many computational models for binding affinity prediction have been developed, but with varying results across targets. Given that ensembling or meta-modeling approaches have shown great promise in reducing model-specific biases, we develop a framework to integrate published force-field-based empirical docking and sequence-based deep learning models. In building this framework, we evaluate many combinations of individual base models, training databases, and several meta-modeling approaches. We show that many of our meta-models significantly improve affinity predictions over base models. Our best meta-models achieve comparable performance to state-of-the-art deep learning tools exclusively based on 3D structures while allowing for improved database scalability and flexibility through the explicit inclusion of features such as physicochemical properties or molecular descriptors. We further demonstrate improved generalization capability by our models using a large-scale benchmark of affinity prediction as well as a virtual screening application benchmark. Overall, we demonstrate that diverse modeling approaches can be ensembled together to gain meaningful improvement in binding affinity prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
干净初彤发布了新的文献求助10
刚刚
科目三应助xiuru采纳,获得10
1秒前
无曲发布了新的文献求助10
1秒前
怕黑的思雁完成签到 ,获得积分10
2秒前
2秒前
imcwj发布了新的文献求助10
2秒前
果果发布了新的文献求助10
2秒前
akuya完成签到,获得积分10
4秒前
125发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
yyy完成签到,获得积分10
5秒前
ling发布了新的文献求助10
6秒前
肖遥完成签到,获得积分10
6秒前
零零二完成签到 ,获得积分10
7秒前
傲娇的凡旋应助nuantong1shy采纳,获得10
7秒前
akuya发布了新的文献求助10
8秒前
酷酷诗蕾完成签到,获得积分10
8秒前
村头保安完成签到,获得积分10
8秒前
冷傲凉面发布了新的文献求助10
9秒前
10秒前
10秒前
LZY完成签到,获得积分10
10秒前
小广完成签到,获得积分10
10秒前
七院发布了新的文献求助300
12秒前
12秒前
清脆盼柳完成签到,获得积分10
13秒前
14秒前
15秒前
诸乘风发布了新的文献求助10
15秒前
Loooong应助hhl采纳,获得10
15秒前
Juliet完成签到,获得积分10
16秒前
简单应助燕初蝶采纳,获得10
16秒前
sine_mora发布了新的文献求助10
16秒前
小乔应助yuanll采纳,获得10
17秒前
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3486853
求助须知:如何正确求助?哪些是违规求助? 3074994
关于积分的说明 9139155
捐赠科研通 2767244
什么是DOI,文献DOI怎么找? 1518499
邀请新用户注册赠送积分活动 703111
科研通“疑难数据库(出版商)”最低求助积分说明 701606