Improved Prediction of Ligand–Protein Binding Affinities by Meta-modeling

亲缘关系 结合亲和力 化学 计算生物学 血浆蛋白结合 配体(生物化学) 立体化学 生物 生物化学 受体
作者
Ho‐Joon Lee,Prashant S. Emani,Mark Gerstein
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01116
摘要

The accurate screening of candidate drug ligands against target proteins through computational approaches is of prime interest to drug development efforts. Such virtual screening depends in part on methods to predict the binding affinity between ligands and proteins. Many computational models for binding affinity prediction have been developed, but with varying results across targets. Given that ensembling or meta-modeling approaches have shown great promise in reducing model-specific biases, we develop a framework to integrate published force-field-based empirical docking and sequence-based deep learning models. In building this framework, we evaluate many combinations of individual base models, training databases, and several meta-modeling approaches. We show that many of our meta-models significantly improve affinity predictions over base models. Our best meta-models achieve comparable performance to state-of-the-art deep learning tools exclusively based on 3D structures while allowing for improved database scalability and flexibility through the explicit inclusion of features such as physicochemical properties or molecular descriptors. We further demonstrate improved generalization capability by our models using a large-scale benchmark of affinity prediction as well as a virtual screening application benchmark. Overall, we demonstrate that diverse modeling approaches can be ensembled together to gain meaningful improvement in binding affinity prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助ginkgoleaf采纳,获得10
刚刚
谷粱紫槐完成签到,获得积分10
1秒前
情怀应助研友_ZlxxzZ采纳,获得10
1秒前
你笑一下嘛zz完成签到,获得积分10
1秒前
1秒前
机灵猕猴桃完成签到,获得积分10
2秒前
2秒前
2秒前
奥特超曼应助Ssss采纳,获得10
3秒前
Master_Ye完成签到,获得积分10
4秒前
菜菜发布了新的文献求助10
4秒前
5秒前
右右发布了新的文献求助10
5秒前
6秒前
余好运完成签到,获得积分20
6秒前
Bio应助耕牛热采纳,获得50
6秒前
tingting发布了新的文献求助10
6秒前
完美世界应助林夏采纳,获得10
6秒前
小蘑菇应助H28G采纳,获得10
7秒前
7秒前
jeffyoung发布了新的文献求助10
7秒前
8秒前
乾乾完成签到,获得积分10
8秒前
ED应助李振博采纳,获得10
8秒前
文卿发布了新的文献求助10
8秒前
钙片儿完成签到,获得积分10
9秒前
清脆立果完成签到,获得积分10
10秒前
10秒前
粗犷的凌兰完成签到,获得积分10
10秒前
10秒前
panjunlu发布了新的文献求助10
10秒前
11秒前
www0717发布了新的文献求助10
11秒前
zzz完成签到,获得积分10
12秒前
研友_ZlxxzZ完成签到,获得积分10
12秒前
归尘应助XS_QI采纳,获得10
12秒前
13秒前
Attempter完成签到,获得积分20
13秒前
Du发布了新的文献求助10
13秒前
钙片儿发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582