Improved Prediction of Ligand–Protein Binding Affinities by Meta-modeling

亲缘关系 结合亲和力 化学 计算生物学 血浆蛋白结合 配体(生物化学) 立体化学 生物 生物化学 受体
作者
Ho‐Joon Lee,Prashant S. Emani,Mark Gerstein
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01116
摘要

The accurate screening of candidate drug ligands against target proteins through computational approaches is of prime interest to drug development efforts. Such virtual screening depends in part on methods to predict the binding affinity between ligands and proteins. Many computational models for binding affinity prediction have been developed, but with varying results across targets. Given that ensembling or meta-modeling approaches have shown great promise in reducing model-specific biases, we develop a framework to integrate published force-field-based empirical docking and sequence-based deep learning models. In building this framework, we evaluate many combinations of individual base models, training databases, and several meta-modeling approaches. We show that many of our meta-models significantly improve affinity predictions over base models. Our best meta-models achieve comparable performance to state-of-the-art deep learning tools exclusively based on 3D structures while allowing for improved database scalability and flexibility through the explicit inclusion of features such as physicochemical properties or molecular descriptors. We further demonstrate improved generalization capability by our models using a large-scale benchmark of affinity prediction as well as a virtual screening application benchmark. Overall, we demonstrate that diverse modeling approaches can be ensembled together to gain meaningful improvement in binding affinity prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Esther发布了新的文献求助30
2秒前
4秒前
李健应助杆杆采纳,获得10
5秒前
5秒前
5秒前
7秒前
7秒前
徐若楠发布了新的文献求助10
9秒前
hou123456发布了新的文献求助10
10秒前
失眠呆呆鱼完成签到 ,获得积分10
11秒前
haha111发布了新的文献求助150
11秒前
12秒前
orixero应助新帅采纳,获得10
12秒前
对方正在看文献完成签到,获得积分10
12秒前
鲲鹏戏龙完成签到,获得积分10
12秒前
PSCs完成签到,获得积分10
14秒前
shuxi完成签到,获得积分10
15秒前
zhao发布了新的文献求助10
16秒前
隐形白亦发布了新的文献求助20
16秒前
18秒前
18秒前
19秒前
now发布了新的文献求助10
22秒前
xzf1996完成签到,获得积分10
23秒前
情怀应助haha111采纳,获得10
24秒前
杆杆发布了新的文献求助10
24秒前
Akim应助章鱼小丸子采纳,获得10
25秒前
26秒前
asd_1应助WH采纳,获得10
27秒前
28秒前
29秒前
kkk完成签到,获得积分10
30秒前
zjw发布了新的文献求助10
31秒前
lalala完成签到,获得积分10
31秒前
32秒前
凡人发布了新的文献求助10
32秒前
阿怪发布了新的文献求助10
34秒前
雨天完成签到,获得积分10
35秒前
Guangyue完成签到,获得积分10
36秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4544659
求助须知:如何正确求助?哪些是违规求助? 3976640
关于积分的说明 12314664
捐赠科研通 3644695
什么是DOI,文献DOI怎么找? 2007167
邀请新用户注册赠送积分活动 1042676
科研通“疑难数据库(出版商)”最低求助积分说明 931669