Improved Prediction of Ligand–Protein Binding Affinities by Meta-modeling

亲缘关系 结合亲和力 化学 计算生物学 血浆蛋白结合 配体(生物化学) 立体化学 生物 生物化学 受体
作者
Ho‐Joon Lee,Prashant S. Emani,Mark Gerstein
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01116
摘要

The accurate screening of candidate drug ligands against target proteins through computational approaches is of prime interest to drug development efforts. Such virtual screening depends in part on methods to predict the binding affinity between ligands and proteins. Many computational models for binding affinity prediction have been developed, but with varying results across targets. Given that ensembling or meta-modeling approaches have shown great promise in reducing model-specific biases, we develop a framework to integrate published force-field-based empirical docking and sequence-based deep learning models. In building this framework, we evaluate many combinations of individual base models, training databases, and several meta-modeling approaches. We show that many of our meta-models significantly improve affinity predictions over base models. Our best meta-models achieve comparable performance to state-of-the-art deep learning tools exclusively based on 3D structures while allowing for improved database scalability and flexibility through the explicit inclusion of features such as physicochemical properties or molecular descriptors. We further demonstrate improved generalization capability by our models using a large-scale benchmark of affinity prediction as well as a virtual screening application benchmark. Overall, we demonstrate that diverse modeling approaches can be ensembled together to gain meaningful improvement in binding affinity prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文献快来完成签到,获得积分10
刚刚
刚刚
1秒前
科研通AI2S应助虤铠采纳,获得30
1秒前
Kirsten发布了新的文献求助10
1秒前
led灯泡发布了新的文献求助10
1秒前
星辰发布了新的文献求助10
1秒前
2秒前
五月好难发布了新的文献求助10
2秒前
EpQAQ完成签到,获得积分10
3秒前
3秒前
神勇难胜完成签到 ,获得积分10
3秒前
邱海华发布了新的文献求助10
3秒前
4秒前
mxr完成签到,获得积分10
4秒前
khh完成签到 ,获得积分10
5秒前
Akim应助vvA11采纳,获得10
5秒前
5秒前
5秒前
蓝天发布了新的文献求助10
7秒前
keyaner发布了新的文献求助10
7秒前
是谁还没睡完成签到 ,获得积分10
7秒前
7秒前
8秒前
科研通AI6应助yangyajie采纳,获得10
9秒前
丘比特应助lawrenceip0926采纳,获得10
9秒前
9秒前
KIKI完成签到,获得积分10
9秒前
fuchao发布了新的文献求助10
9秒前
khh关注了科研通微信公众号
9秒前
10秒前
李伟完成签到,获得积分10
10秒前
星辰完成签到,获得积分10
10秒前
sakyadamo发布了新的文献求助10
10秒前
科研通AI6应助上山的吗喽采纳,获得10
11秒前
悦耳的灵完成签到 ,获得积分10
11秒前
cheng发布了新的文献求助10
12秒前
12秒前
Vv完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901