Improved Prediction of Ligand–Protein Binding Affinities by Meta-modeling

亲缘关系 结合亲和力 化学 计算生物学 血浆蛋白结合 配体(生物化学) 立体化学 生物 生物化学 受体
作者
Ho‐Joon Lee,Prashant S. Emani,Mark Gerstein
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01116
摘要

The accurate screening of candidate drug ligands against target proteins through computational approaches is of prime interest to drug development efforts. Such virtual screening depends in part on methods to predict the binding affinity between ligands and proteins. Many computational models for binding affinity prediction have been developed, but with varying results across targets. Given that ensembling or meta-modeling approaches have shown great promise in reducing model-specific biases, we develop a framework to integrate published force-field-based empirical docking and sequence-based deep learning models. In building this framework, we evaluate many combinations of individual base models, training databases, and several meta-modeling approaches. We show that many of our meta-models significantly improve affinity predictions over base models. Our best meta-models achieve comparable performance to state-of-the-art deep learning tools exclusively based on 3D structures while allowing for improved database scalability and flexibility through the explicit inclusion of features such as physicochemical properties or molecular descriptors. We further demonstrate improved generalization capability by our models using a large-scale benchmark of affinity prediction as well as a virtual screening application benchmark. Overall, we demonstrate that diverse modeling approaches can be ensembled together to gain meaningful improvement in binding affinity prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
寒松发布了新的文献求助10
1秒前
bkagyin应助奶冻采纳,获得10
2秒前
远山千霖完成签到,获得积分20
3秒前
4秒前
内向的隶发布了新的文献求助10
5秒前
科研通AI2S应助zxvcbnm采纳,获得10
5秒前
5秒前
科目三应助薇子采纳,获得10
5秒前
5秒前
李爱国应助勇哥你好采纳,获得10
6秒前
程霜发布了新的文献求助10
7秒前
远山千霖发布了新的文献求助10
9秒前
9秒前
10秒前
Wynter完成签到 ,获得积分10
10秒前
10秒前
科研通AI6应助WN采纳,获得10
12秒前
ding应助勤劳亦瑶采纳,获得10
12秒前
13秒前
孝顺的宫发布了新的文献求助10
13秒前
wyd发布了新的文献求助10
13秒前
mogekkko完成签到,获得积分10
14秒前
歪歪完成签到,获得积分10
14秒前
SGOM完成签到 ,获得积分10
14秒前
15秒前
流泪猫猫头完成签到,获得积分10
16秒前
奶冻发布了新的文献求助10
16秒前
18秒前
何晶晶发布了新的文献求助30
18秒前
JamesPei应助Lchemistry采纳,获得10
19秒前
wyd完成签到,获得积分10
19秒前
xslj发布了新的文献求助10
20秒前
一个有点长的序完成签到 ,获得积分10
20秒前
杨程羽完成签到 ,获得积分10
21秒前
背后故事发布了新的文献求助10
22秒前
22秒前
22秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571861
求助须知:如何正确求助?哪些是违规求助? 4657052
关于积分的说明 14718892
捐赠科研通 4597857
什么是DOI,文献DOI怎么找? 2523425
邀请新用户注册赠送积分活动 1494258
关于科研通互助平台的介绍 1464345