Bioorthogonal Cleavage Chemistry: Harnessing the Bond‐Break Reactions for Biomolecule Manipulations in Living Systems

化学 生物正交化学 生物分子 纳米技术 劈理(地质) 组合化学 点击化学 生物化学 材料科学 岩土工程 断裂(地质) 工程类
作者
Yuchao Zhu,Feng Lin,Ziqi Liu,Xin Wang,Shubing Wang,Xinyuan Fan,Peng R. Chen
出处
期刊:Chinese Journal of Chemistry [Wiley]
标识
DOI:10.1002/cjoc.202400876
摘要

Comprehensive Summary The advancement of bioorthogonal cleavage reactions (BCRs) has expanded the scope of the bioorthogonal chemistry toolkit, leading to a diverse array of innovative biological applications. These include but are not limited to precise spatial and temporal activation of intracellular probes, prodrugs, proteins, glycans, and nucleic acids. Herein, we summarize recent efforts by our group to develop BCRs for manipulating functional molecules in living species to meet various needs, along with future perspectives in this exciting field. How do you get into this specific field? Could you please share some experiences with our readers? Chemists are good at both forming and breaking bonds. Back in 2013, while the field of bioorthogonal reactions was continuously thriving, most researchers focused on the "ligation" type of bioorthogonal reactions. Alternatively, I started to wonder whether we could develop the "bond‐cleavage" type of bioorthogonal reactions? We reviewed the literature and found that this is indeed a field that is yet to be developed. I immediately encouraged my graduate students to develop such reactions while I began to look for potential applications for such new chemistry. We soon developed a series of bioorthogonal "cleavage" reactions that can be triggered by metals, small molecules, as well as photocatalysis. We then applied these reactions to activate proteins and other biomolecules, allowing the gain‐of‐function study of their properties inside living cells. Small molecule drugs can also be activated by these reactions within tumor bed, which has led to safer and more efficient anti‐cancer drugs. Over the past decade, we have built a bioorthogonal decaging toolbox that is generally applicable to virtually any molecules of interest, and we are persistently working on broadening the spectrum of reaction types and their applications. This has created a new direction in bioorthogonal chemistry with broad utilities in life sciences and medicine. How do you supervise your students? I encourage students to think independently and collaborate widely. I would be delighted if some of their ideas could let me learn something. In addition to experimental training, I also pay great attention to cultivating students' logical thinking, English writing, and presentation skills. For our regular weekly group meetings, two students will give in‐depth presentations on their research projects, while all group members and I will provide constructive discussions and suggestions. What is the most important personality for scientific research? In my opinion, the most important personality traits for scientific research are curiosity, perseverance, and critical thinking. What is your favorite journal(s)? ACS Chemical Biology . Could you please give us some advices on improving Chinese Journal of Chemistry? Consider organizing special issues that focus on emerging areas of chemistry, which can attract high‐quality submissions and increase the journal's impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxl发布了新的文献求助10
刚刚
刚刚
斯文败类应助诚诚不差事采纳,获得10
刚刚
刚刚
哇塞发布了新的文献求助10
刚刚
刚刚
贪玩的德天完成签到 ,获得积分10
刚刚
1秒前
lee_someone完成签到,获得积分10
1秒前
1秒前
lzz应助娇气的友易采纳,获得10
1秒前
2秒前
2秒前
2秒前
大萝贝完成签到,获得积分10
2秒前
Chloe发布了新的文献求助20
3秒前
3秒前
这次会赢吗完成签到,获得积分10
4秒前
4秒前
YK发布了新的文献求助10
4秒前
4秒前
香蕉觅云应助笑点低的紫采纳,获得10
4秒前
云淡风轻发布了新的文献求助10
4秒前
5秒前
5秒前
Akim应助zychaos采纳,获得10
5秒前
czx给czx的求助进行了留言
5秒前
xxxllllll发布了新的文献求助30
6秒前
liux发布了新的文献求助30
6秒前
完美世界应助眠眠2002采纳,获得10
6秒前
6秒前
lxy发布了新的文献求助10
6秒前
SunGuangkai发布了新的文献求助10
6秒前
123完成签到,获得积分10
7秒前
田柾国发布了新的文献求助10
7秒前
打打应助木云采纳,获得10
7秒前
敏感的莆完成签到,获得积分10
8秒前
YANG发布了新的文献求助10
8秒前
科研通AI5应助屋子采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960767
求助须知:如何正确求助?哪些是违规求助? 4221237
关于积分的说明 13146027
捐赠科研通 4004962
什么是DOI,文献DOI怎么找? 2191794
邀请新用户注册赠送积分活动 1205889
关于科研通互助平台的介绍 1116970