自愈水凝胶
材料科学
软机器人
纳米技术
数码产品
生物相容性材料
柔性电子器件
生物医学工程
计算机科学
电气工程
人工智能
机器人
工程类
高分子化学
作者
Haiyang Qin,Mengmeng Sun,Peiyi Li,Junye Li,Zhilin Zhang,Shuqi Dai,Mingjun Huang,Baoyang Lu,Xiaofang Pan,Lidong Wu
标识
DOI:10.1002/admt.202300406
摘要
Abstract Soft electronics have emerged as a prominent research domain, with diverse applications from medical monitoring to soft robotics. Liquid metal (LM) has emerged as a promising material for soft electronics due to its high electrical conductivity (3.4 × 10 6 S m −1 ) and fluidity at room temperature. However, the dispersion of LM nanoparticles and the performance of LM composites in soft electronics applications have not been extensively explored. In this study, a novel approach for the direct dispersion of LM nanoparticles in biocompatible hyaluronic acid (HA) to create multifunctional LM/HA hydrogels is presented. The LM/HA hydrogel displays remarkable electromechanical properties, including high stretchability (2,700%) and conductivity (116 S m −1 ), as well as excellent sensitivity (GF = 4.8) as a sensing material. Specifically, a facial expression monitoring system is developed utilizing the LM/HA hydrogel as the sensing material, along with a microcontroller, signal‐processing circuits, and a Bluetooth transceiver. The LM/HA hydrogel adheres closely to the skin surface to ensure the accuracy of facial expression monitoring. In summary, this study not only advances the understanding of the properties of LM but also expands the potential application scenarios of multifunctional LM hydrogels in soft robotics and implantable sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI