Optical and SAR Images Matching Based on Phase Structure Convolutional Features

人工智能 计算机科学 合成孔径雷达 模式识别(心理学) 匹配(统计) 相似性(几何) 保险丝(电气) 计算机视觉 方向(向量空间) 卷积神经网络 图像配准 图像(数学) 数学 物理 统计 量子力学 几何学
作者
Yang Liu,Hua Qi,Shiyong Peng
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2023.3298687
摘要

High-precision image matching techniques are required to fully utilize complementary information from optical and synthetic aperture radar (SAR) images. However, there are notable nonlinear radiometric differences (NRD) between optical and SAR images because of the various imaging techniques used by the various sensors. The existing template matching method based on the Siamese structure underutilizes the phase structure information, which is less susceptible to NRD, resulting in subpar matching precision. To address this problem, this letter proposes an optical and SAR image matching method based on phase structure convolutional features that use the log-Gabor filter to extract the multi-orientation phase structure information of the image. It constructs a multi-scale fusion SiamUNet-7 (MSF SiamUNet-7) network to extract the phase structure convolutional features to fully fuse the local texture information at a large scale and the global structure information at a small scale. The phase structure convolutional features of the optical and SAR images are used to generate the image pair similarity map using the mutual correlation layer, and the peak position in the similarity map is regarded as the best matching result. Experiments showed that, on the cropped Tiny-SEN1-2 dataset, the correct matching rate (CMR) and mean matching error (mME) of the threshold T ≤ 4 of the proposed method were 92.24% and 1.348, respectively, which improved the CMR( T ≤ 4) by 4.51% and reduced the mME by 0.046 compared with the original SiamUNet-9 model. The proposed method can effectively overcome the large NRD between the optical and SAR images and achieve high-precision matching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘大妮完成签到,获得积分10
刚刚
clean完成签到,获得积分20
1秒前
Lucas发布了新的文献求助10
1秒前
1秒前
朴实以松发布了新的文献求助10
1秒前
感谢橘子转发科研通微信,获得积分50
1秒前
围炉煮茶完成签到,获得积分10
2秒前
2秒前
云锋发布了新的文献求助10
3秒前
兴奋的问旋应助务实盼海采纳,获得10
3秒前
李秋静发布了新的文献求助10
3秒前
3秒前
无花果应助cookie采纳,获得10
4秒前
4秒前
斯文败类应助阳尧采纳,获得10
4秒前
5秒前
5秒前
abjz完成签到,获得积分10
5秒前
三千弱水为君饮完成签到,获得积分10
6秒前
6秒前
cata完成签到,获得积分10
6秒前
感谢79转发科研通微信,获得积分50
6秒前
6秒前
troubadourelf发布了新的文献求助10
7秒前
frank发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
感谢超帅冬易转发科研通微信,获得积分50
10秒前
10秒前
11秒前
11秒前
lixia完成签到 ,获得积分10
11秒前
11秒前
12秒前
在水一方应助jy采纳,获得10
12秒前
12秒前
Lucas完成签到,获得积分10
13秒前
13秒前
NorthWang发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794