Synergistic integration of MXene nanosheets with CdS@TiO2 core@shell S-scheme photocatalyst for augmented hydrogen generation

光催化 材料科学 非阻塞I/O 制氢 X射线光电子能谱 纳米片 纳米结构 化学工程 纳米复合材料 可见光谱 分解水 纳米技术 壳体(结构) 催化作用 复合材料 化学 光电子学 生物化学 有机化学 工程类
作者
Vempuluru Navakoteswara Rao,Hyunguk Kwon,Yonghee Lee,Parnapalli Ravi,Chi Won Ahn,Kyeounghak Kim,Jun Yang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:471: 144490-144490 被引量:35
标识
DOI:10.1016/j.cej.2023.144490
摘要

In order to ensure continuous and stable production of hydrogen (H2), the development of hierarchical nanostructures within a few-layer Mxene nanosheet, incorporating an ultrathin TiO2 shell material, is essential. This shell material plays a crucial role in maintaining the long-term stability of the core and preventing photo-corrosion, thus enabling uninterrupted H2 generation. To evaluate their potential as visible-driven photocatalysts for high H2 production, we conducted a comparative analysis of CdS cores covered with three different shell transition metal oxides (TiO2@NiO@ZnO), supported by Mxene. Structural and morphological characterizations through XRD and TEM confirmed the formation of pure CdS@TiO2@NiO@ZnO core–shell nanostructures, characterized by spherical shapes with a core diameter of 187 nm and a shell thickness of 19.2 nm. XPS experiments demonstrated the structural integrity of the individual elements within the nanocomposite, existing in their respective oxidation states within the core@shell structure. The hierarchical nanostructure exhibited optical characteristics with an absorption edge ranging from 480 to 580 nm. Among the three different shell materials, TiO2 displayed the highest photocatalytic activity under visible light irradiation, followed by NiO and ZnO. Based on our findings, the CdS@TiO2 core@shell photocatalyst supported by Mxene exhibited the highest efficiency, with a production rate of 16.2 mmol.h−1.g-1cat. This can be attributed to enhanced charge separation, the spatial distribution of carriers, and favorable structural properties. Our DFT calculations further supported the efficacy of coupling Mxene with CdS/TiO2, as it facilitated efficient water splitting, with CdS favoring H2O dissociation and Mxene favoring HER. These results highlight the potential of developing highly efficient photocatalysts for water splitting by integrating Mxene with CdS/TiO2. Additionally, The prepared CDTM (Mxene@CdS/TiO2) photocatalyst existing S-scheme heterojunction for efficient water splitting. This underscores the system's effective functioning across diverse sceneries, Overall, our study presents a feasible and effective strategy for constructing an S-scheme heterojunction system that utilizes photo charge carrier separation to enhance the utilization and conversion of solar energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丸子完成签到 ,获得积分10
1秒前
Bran完成签到,获得积分10
1秒前
yxy999完成签到,获得积分10
2秒前
俊逸书琴完成签到 ,获得积分10
2秒前
桐桐应助大山采纳,获得30
2秒前
可爱的函函应助DavidWebb采纳,获得10
2秒前
向上先生完成签到,获得积分10
3秒前
都是应助露露采纳,获得20
3秒前
斯文败类应助轻歌水越采纳,获得10
3秒前
3秒前
4秒前
Roach完成签到,获得积分10
4秒前
pan完成签到,获得积分10
4秒前
simple发布了新的文献求助10
4秒前
hh完成签到,获得积分10
4秒前
5秒前
科研通AI2S应助西北望采纳,获得10
5秒前
ZYC007完成签到,获得积分10
5秒前
6秒前
NexusExplorer应助apple采纳,获得10
6秒前
cccc完成签到,获得积分10
6秒前
6秒前
springkaka完成签到,获得积分0
7秒前
shy完成签到,获得积分10
7秒前
相爱就永远在一起完成签到,获得积分10
8秒前
李若风完成签到,获得积分10
8秒前
HH完成签到,获得积分10
8秒前
枣核儿完成签到,获得积分10
9秒前
GGbong完成签到 ,获得积分10
9秒前
万能图书馆应助威武的捕采纳,获得10
10秒前
复杂小海豚应助威武的捕采纳,获得10
10秒前
李博士发布了新的文献求助30
10秒前
司徒涟妖完成签到,获得积分10
11秒前
Kay76完成签到,获得积分10
11秒前
CCC完成签到 ,获得积分10
12秒前
疯狂的碧凡完成签到,获得积分10
12秒前
王一博完成签到,获得积分10
13秒前
彭鱼晏发布了新的文献求助30
13秒前
lucia5354完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798255
关于积分的说明 7827373
捐赠科研通 2454823
什么是DOI,文献DOI怎么找? 1306491
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565