Deep Learning-Based Fully Automated Segmentation of Regional Muscle Volume and Spatial Intermuscular Fat Using CT

分割 豪斯多夫距离 人工智能 组内相关 计算机科学 试验装置 阈值 模式识别(心理学) 解剖 数学 医学 再现性 图像(数学) 统计
作者
Rui Zhang,HE An-zhi,Wei Xia,Yongbin Su,Junming Jian,Yandong Liu,Zhe Guo,Wei Shi,Zhenguang Zhang,Bo He,Xiaoguang Cheng,Xin Gao,Wenyong Liu,Ling Wang
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (10): 2280-2289 被引量:2
标识
DOI:10.1016/j.acra.2023.06.009
摘要

Rationale and Objectives We aim to develop a CT-based deep learning (DL) system for fully automatic segmentation of regional muscle volume and measurement of the spatial intermuscular fat distribution of the gluteus maximus muscle. Materials and Methods A total of 472 subjects were enrolled and randomly assigned to one of three groups: a training set, test set 1, and test set 2. For each subject in the training set and test set 1, we selected six slices of the CT images as the region of interest for manual segmentation by a radiologist. For each subject in test set 2, we selected all slices of the gluteus maximus muscle on the CT images for manual segmentation. The DL system was constructed using Attention U-Net and the Otsu binary thresholding method to segment the muscle and measure the fat fraction of the gluteus maximus muscle. The segmentation results of the DL system were evaluated using the Dice similarity coefficient (DSC), Hausdorff distance (HD), and the average surface distance (ASD) as metrics. Intraclass correlation coefficients (ICCs) and Bland-Altman plots were used to assess agreement in the measurements of fat fraction between the radiologist and the DL system. Results The DL system showed good segmentation performance on the two test sets, with DSCs of 0.930 and 0.873, respectively. The fat fraction of the gluteus maximus muscle measured by the DL system was in agreement with the radiologist (ICC = 0.748). Conclusion The proposed DL system showed accurate, fully automated segmentation performance and good agreement with the radiologist at fat fraction evaluation, and can be further used for muscle evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柳云风发布了新的文献求助10
刚刚
刚刚
1秒前
2秒前
2秒前
baniu发布了新的文献求助50
2秒前
天天快乐应助48662采纳,获得10
2秒前
LiuKun发布了新的文献求助10
2秒前
英俊的铭应助无名之辈采纳,获得10
3秒前
3秒前
Gmute发布了新的文献求助30
3秒前
烟花应助Nat采纳,获得10
4秒前
HonamC完成签到,获得积分10
4秒前
洁琼93发布了新的文献求助10
5秒前
where完成签到,获得积分10
5秒前
FF完成签到,获得积分10
5秒前
Selenge发布了新的文献求助10
6秒前
瘾9发布了新的文献求助10
6秒前
Adler发布了新的文献求助30
7秒前
西番雅发布了新的文献求助10
7秒前
7秒前
离轩完成签到 ,获得积分20
7秒前
自由凝云发布了新的文献求助10
8秒前
8秒前
biubiu发布了新的文献求助20
10秒前
小二郎应助杀死周一采纳,获得10
10秒前
11秒前
11秒前
里歪歪关注了科研通微信公众号
11秒前
11秒前
NexusExplorer应助心海采纳,获得10
11秒前
离轩关注了科研通微信公众号
12秒前
我很懵逼完成签到,获得积分10
14秒前
领导范儿应助Selenge采纳,获得10
14秒前
15秒前
纯粹发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123309
求助须知:如何正确求助?哪些是违规求助? 2773824
关于积分的说明 7719656
捐赠科研通 2429529
什么是DOI,文献DOI怎么找? 1290348
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251