Deep Learning-Based Fully Automated Segmentation of Regional Muscle Volume and Spatial Intermuscular Fat Using CT

分割 豪斯多夫距离 人工智能 组内相关 计算机科学 试验装置 阈值 模式识别(心理学) 解剖 数学 医学 再现性 图像(数学) 统计
作者
Rui Zhang,Aiting He,Wei Xia,Yongbin Su,Junming Jian,Yandong Liu,Zhe Guo,Wei Shi,Zhenguang Zhang,Bo He,Xiaoguang Cheng,Xin Gao,Yajun Liu,Ling Wang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (10): 2280-2289 被引量:6
标识
DOI:10.1016/j.acra.2023.06.009
摘要

Rationale and Objectives We aim to develop a CT-based deep learning (DL) system for fully automatic segmentation of regional muscle volume and measurement of the spatial intermuscular fat distribution of the gluteus maximus muscle. Materials and Methods A total of 472 subjects were enrolled and randomly assigned to one of three groups: a training set, test set 1, and test set 2. For each subject in the training set and test set 1, we selected six slices of the CT images as the region of interest for manual segmentation by a radiologist. For each subject in test set 2, we selected all slices of the gluteus maximus muscle on the CT images for manual segmentation. The DL system was constructed using Attention U-Net and the Otsu binary thresholding method to segment the muscle and measure the fat fraction of the gluteus maximus muscle. The segmentation results of the DL system were evaluated using the Dice similarity coefficient (DSC), Hausdorff distance (HD), and the average surface distance (ASD) as metrics. Intraclass correlation coefficients (ICCs) and Bland-Altman plots were used to assess agreement in the measurements of fat fraction between the radiologist and the DL system. Results The DL system showed good segmentation performance on the two test sets, with DSCs of 0.930 and 0.873, respectively. The fat fraction of the gluteus maximus muscle measured by the DL system was in agreement with the radiologist (ICC = 0.748). Conclusion The proposed DL system showed accurate, fully automated segmentation performance and good agreement with the radiologist at fat fraction evaluation, and can be further used for muscle evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满乐萱发布了新的文献求助10
刚刚
刚刚
詹妮完成签到,获得积分10
1秒前
潸潸发布了新的文献求助30
1秒前
1秒前
fs完成签到,获得积分10
1秒前
追寻宛海发布了新的文献求助20
2秒前
科研牛马发布了新的文献求助10
3秒前
大模型应助博修采纳,获得10
3秒前
TINASURE发布了新的文献求助10
4秒前
4秒前
从容幼南发布了新的文献求助10
5秒前
7秒前
婷婷发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
TINASURE完成签到,获得积分20
10秒前
Liuxinyan完成签到,获得积分10
11秒前
杯水还茶完成签到,获得积分10
11秒前
11秒前
cfplhys发布了新的文献求助10
12秒前
13秒前
爱吃香菜发布了新的文献求助10
13秒前
大花猫发布了新的文献求助20
13秒前
科目三应助淡淡夕阳采纳,获得10
13秒前
皮崇知发布了新的文献求助10
14秒前
14秒前
14秒前
科研牛马完成签到,获得积分20
16秒前
16秒前
16秒前
Jasper应助根根采纳,获得10
16秒前
岩下松风完成签到,获得积分10
17秒前
Gudeguy完成签到 ,获得积分10
17秒前
嗯哼哈哈完成签到,获得积分10
17秒前
淡淡夕阳发布了新的文献求助10
17秒前
wanci应助cx采纳,获得10
17秒前
脑洞疼应助发生了什么树采纳,获得10
17秒前
洪洪完成签到,获得积分20
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511965
关于积分的说明 11161125
捐赠科研通 3246769
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804403