已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DPF-Net: A Dual-Path Progressive Fusion Network for Retinal Vessel Segmentation

计算机科学 人工智能 特征(语言学) 块(置换群论) 分割 卷积神经网络 模式识别(心理学) 编码器 路径(计算) 计算机视觉 深度学习 数学 哲学 操作系统 程序设计语言 语言学 几何学
作者
Jianyong Li,Ge Gao,Lei Yang,Gui‐Bin Bian,Yanhong Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:45
标识
DOI:10.1109/tim.2023.3277946
摘要

Precise segmentation of retinal vessels from fundus images is essential for intervention in numerous diseases, and helpful in preventing and treating blindness. Deep convolutional neural network (DCNN) based approaches have achieved an excellent success in the automatic segmentation of retinal vessels. However, a single convolutional neural network (CNN) structure can only capture limited local features and lack the ability to extract global contexts. Meanwhile, the strategies used for the feature fusion of low-level detail information with high-level semantic information fail to handle the phenomenon of the semantic gap issue between encoder and decoder validly. Therefore, high-precision segmentation of retinal vessels still remains a challenging task. In this paper, a dual-path progressive fusion network, named DPF-Net, is proposed for accurate and end-to-end segmentation of retinal vessels from fundus images. To detect rich feature formation, a dual-path encoder is proposed for effective feature representation, which contains a CNN path for detecting local features and a recurrent convolutional path for extracting contextual information. It could acquire sufficient detailed information and rich contextual information at the same time. In addition, a progressive fusion strategy is proposed for effective feature aggregation at the same scale, adjacent scales and all scales, which is composed by interactive fusion (IF) block, cross-layer fusion (CLF) block and a scale feature fusion (SFF) block. Combine with the feature maps from different paths at the same scale, an IF block is proposed to fuse detailed features with contextual features to obtain fusion features. Meanwhile, a CLF block is proposed to fuse features between adjacent scales to guide low-level feature representation through high-level features. Finally, a SFF block is proposed to recalculate the weights of all scales to realize effective feature aggregation from all scales. Extensive experiments have conducted on three publicly available retinal datasets (DRIVE, CHASEDB1 and STARE). Experimental results show that proposed DPF-Net could achieve a better segmentation results compared to other state-of-the-art methods, especially the proposed progressive fusion strategy indeed promotes feature fusion and significantly boosts the segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江心洲农民完成签到,获得积分10
1秒前
英俊芷完成签到 ,获得积分10
2秒前
5秒前
花深粥完成签到,获得积分10
6秒前
神农完成签到,获得积分10
6秒前
szh完成签到,获得积分10
8秒前
共享精神应助小刘哥儿采纳,获得10
10秒前
夜星子发布了新的文献求助10
10秒前
11秒前
12秒前
善学以致用应助山水之乐采纳,获得10
12秒前
12秒前
1111完成签到 ,获得积分10
12秒前
陶醉晓凡发布了新的文献求助10
13秒前
123完成签到,获得积分10
14秒前
FashionBoy应助Lavender采纳,获得10
14秒前
14秒前
cc完成签到,获得积分10
15秒前
小桃枝发布了新的文献求助10
16秒前
zeng完成签到,获得积分10
17秒前
moon完成签到,获得积分10
17秒前
17秒前
英姑应助大吉采纳,获得10
18秒前
18秒前
Hello应助wdd采纳,获得10
18秒前
CodeCraft应助小刘哥儿采纳,获得10
18秒前
19秒前
羽羽完成签到 ,获得积分10
19秒前
Raven应助胡豆采纳,获得10
19秒前
20秒前
xiaomeng完成签到 ,获得积分10
20秒前
逃跑冰蓝发布了新的文献求助10
20秒前
俭朴映阳发布了新的文献求助10
21秒前
打打应助Zyc采纳,获得10
23秒前
阿明留下了新的社区评论
24秒前
25秒前
Criminology34应助小刘哥儿采纳,获得10
26秒前
小林驳回了wjk应助
27秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312489
求助须知:如何正确求助?哪些是违规求助? 4456148
关于积分的说明 13865749
捐赠科研通 4344664
什么是DOI,文献DOI怎么找? 2386013
邀请新用户注册赠送积分活动 1380317
关于科研通互助平台的介绍 1348719