DPF-Net: A Dual-Path Progressive Fusion Network for Retinal Vessel Segmentation

计算机科学 人工智能 特征(语言学) 块(置换群论) 分割 卷积神经网络 模式识别(心理学) 编码器 路径(计算) 计算机视觉 深度学习 数学 哲学 语言学 几何学 程序设计语言 操作系统
作者
Jianyong Li,Ge Gao,Lei Yang,Gui‐Bin Bian,Yanhong Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:45
标识
DOI:10.1109/tim.2023.3277946
摘要

Precise segmentation of retinal vessels from fundus images is essential for intervention in numerous diseases, and helpful in preventing and treating blindness. Deep convolutional neural network (DCNN) based approaches have achieved an excellent success in the automatic segmentation of retinal vessels. However, a single convolutional neural network (CNN) structure can only capture limited local features and lack the ability to extract global contexts. Meanwhile, the strategies used for the feature fusion of low-level detail information with high-level semantic information fail to handle the phenomenon of the semantic gap issue between encoder and decoder validly. Therefore, high-precision segmentation of retinal vessels still remains a challenging task. In this paper, a dual-path progressive fusion network, named DPF-Net, is proposed for accurate and end-to-end segmentation of retinal vessels from fundus images. To detect rich feature formation, a dual-path encoder is proposed for effective feature representation, which contains a CNN path for detecting local features and a recurrent convolutional path for extracting contextual information. It could acquire sufficient detailed information and rich contextual information at the same time. In addition, a progressive fusion strategy is proposed for effective feature aggregation at the same scale, adjacent scales and all scales, which is composed by interactive fusion (IF) block, cross-layer fusion (CLF) block and a scale feature fusion (SFF) block. Combine with the feature maps from different paths at the same scale, an IF block is proposed to fuse detailed features with contextual features to obtain fusion features. Meanwhile, a CLF block is proposed to fuse features between adjacent scales to guide low-level feature representation through high-level features. Finally, a SFF block is proposed to recalculate the weights of all scales to realize effective feature aggregation from all scales. Extensive experiments have conducted on three publicly available retinal datasets (DRIVE, CHASEDB1 and STARE). Experimental results show that proposed DPF-Net could achieve a better segmentation results compared to other state-of-the-art methods, especially the proposed progressive fusion strategy indeed promotes feature fusion and significantly boosts the segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
句芒完成签到,获得积分20
刚刚
lchenbio发布了新的文献求助10
1秒前
菜鸟发布了新的文献求助10
1秒前
实验室应助wz采纳,获得30
2秒前
Akim应助高兴的羊采纳,获得10
2秒前
2秒前
2秒前
FashionBoy应助nicoco采纳,获得10
3秒前
共享精神应助Thestar采纳,获得10
3秒前
二三发布了新的文献求助10
3秒前
刘沛鑫完成签到,获得积分10
4秒前
5秒前
淡淡土豆应助記yian采纳,获得10
5秒前
zzcherished发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
lchenbio完成签到,获得积分10
7秒前
刘沛鑫发布了新的文献求助10
7秒前
Akim应助小树苗采纳,获得20
8秒前
9秒前
9秒前
极品男大完成签到,获得积分10
9秒前
9秒前
yznfly应助Yangyang采纳,获得200
9秒前
10秒前
赘婿应助天真千易采纳,获得10
10秒前
田様应助天真千易采纳,获得10
10秒前
在水一方应助天真千易采纳,获得10
10秒前
传奇3应助天真千易采纳,获得10
10秒前
11秒前
Orange应助小哥采纳,获得10
11秒前
11秒前
无花果应助加减乘除采纳,获得10
11秒前
xiaojie2024发布了新的文献求助10
12秒前
13秒前
ww发布了新的文献求助10
14秒前
高兴的羊发布了新的文献求助10
15秒前
大海发布了新的文献求助10
15秒前
了了发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525236
求助须知:如何正确求助?哪些是违规求助? 4615551
关于积分的说明 14548959
捐赠科研通 4553590
什么是DOI,文献DOI怎么找? 2495405
邀请新用户注册赠送积分活动 1475947
关于科研通互助平台的介绍 1447675