已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DPF-Net: A Dual-Path Progressive Fusion Network for Retinal Vessel Segmentation

计算机科学 人工智能 特征(语言学) 块(置换群论) 分割 卷积神经网络 模式识别(心理学) 编码器 路径(计算) 计算机视觉 深度学习 数学 哲学 操作系统 程序设计语言 语言学 几何学
作者
Jianyong Li,Ge Gao,Lei Yang,Gui‐Bin Bian,Yanhong Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:45
标识
DOI:10.1109/tim.2023.3277946
摘要

Precise segmentation of retinal vessels from fundus images is essential for intervention in numerous diseases, and helpful in preventing and treating blindness. Deep convolutional neural network (DCNN) based approaches have achieved an excellent success in the automatic segmentation of retinal vessels. However, a single convolutional neural network (CNN) structure can only capture limited local features and lack the ability to extract global contexts. Meanwhile, the strategies used for the feature fusion of low-level detail information with high-level semantic information fail to handle the phenomenon of the semantic gap issue between encoder and decoder validly. Therefore, high-precision segmentation of retinal vessels still remains a challenging task. In this paper, a dual-path progressive fusion network, named DPF-Net, is proposed for accurate and end-to-end segmentation of retinal vessels from fundus images. To detect rich feature formation, a dual-path encoder is proposed for effective feature representation, which contains a CNN path for detecting local features and a recurrent convolutional path for extracting contextual information. It could acquire sufficient detailed information and rich contextual information at the same time. In addition, a progressive fusion strategy is proposed for effective feature aggregation at the same scale, adjacent scales and all scales, which is composed by interactive fusion (IF) block, cross-layer fusion (CLF) block and a scale feature fusion (SFF) block. Combine with the feature maps from different paths at the same scale, an IF block is proposed to fuse detailed features with contextual features to obtain fusion features. Meanwhile, a CLF block is proposed to fuse features between adjacent scales to guide low-level feature representation through high-level features. Finally, a SFF block is proposed to recalculate the weights of all scales to realize effective feature aggregation from all scales. Extensive experiments have conducted on three publicly available retinal datasets (DRIVE, CHASEDB1 and STARE). Experimental results show that proposed DPF-Net could achieve a better segmentation results compared to other state-of-the-art methods, especially the proposed progressive fusion strategy indeed promotes feature fusion and significantly boosts the segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿基米德发布了新的文献求助10
刚刚
Iron_five完成签到 ,获得积分0
刚刚
雅典的宠儿完成签到 ,获得积分10
刚刚
2秒前
2秒前
3秒前
江江发布了新的文献求助10
3秒前
SiO2完成签到,获得积分10
3秒前
领导范儿应助casperzwj采纳,获得10
4秒前
4秒前
6秒前
6秒前
阳春发布了新的文献求助10
7秒前
Lulu完成签到 ,获得积分10
7秒前
ZZH发布了新的文献求助10
8秒前
寒冷的咖啡应助桃子e采纳,获得10
10秒前
hhq完成签到 ,获得积分10
12秒前
万能图书馆应助江江采纳,获得10
13秒前
灵梦柠檬酸完成签到,获得积分10
14秒前
15秒前
勤奋幻嫣完成签到,获得积分20
18秒前
yszhang完成签到 ,获得积分10
18秒前
某某完成签到 ,获得积分10
19秒前
19秒前
听音乐的可可完成签到 ,获得积分10
20秒前
王小苗儿关注了科研通微信公众号
21秒前
姆姆没买完成签到 ,获得积分0
22秒前
LUCKY完成签到 ,获得积分10
22秒前
SciGPT应助He采纳,获得10
23秒前
CNC发布了新的文献求助10
23秒前
24秒前
abcd完成签到,获得积分20
25秒前
xiaose发布了新的文献求助30
25秒前
ll完成签到 ,获得积分10
25秒前
Owen应助liuxi采纳,获得10
26秒前
TaoJ发布了新的文献求助10
28秒前
30秒前
森森森发布了新的文献求助10
30秒前
xiaose发布了新的文献求助10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779519
求助须知:如何正确求助?哪些是违规求助? 5648009
关于积分的说明 15451956
捐赠科研通 4910775
什么是DOI,文献DOI怎么找? 2642871
邀请新用户注册赠送积分活动 1590541
关于科研通互助平台的介绍 1544954