已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DPF-Net: A Dual-Path Progressive Fusion Network for Retinal Vessel Segmentation

计算机科学 人工智能 特征(语言学) 块(置换群论) 分割 卷积神经网络 模式识别(心理学) 编码器 路径(计算) 计算机视觉 深度学习 数学 哲学 操作系统 程序设计语言 语言学 几何学
作者
Jianyong Li,Ge Gao,Lei Yang,Gui‐Bin Bian,Yanhong Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:45
标识
DOI:10.1109/tim.2023.3277946
摘要

Precise segmentation of retinal vessels from fundus images is essential for intervention in numerous diseases, and helpful in preventing and treating blindness. Deep convolutional neural network (DCNN) based approaches have achieved an excellent success in the automatic segmentation of retinal vessels. However, a single convolutional neural network (CNN) structure can only capture limited local features and lack the ability to extract global contexts. Meanwhile, the strategies used for the feature fusion of low-level detail information with high-level semantic information fail to handle the phenomenon of the semantic gap issue between encoder and decoder validly. Therefore, high-precision segmentation of retinal vessels still remains a challenging task. In this paper, a dual-path progressive fusion network, named DPF-Net, is proposed for accurate and end-to-end segmentation of retinal vessels from fundus images. To detect rich feature formation, a dual-path encoder is proposed for effective feature representation, which contains a CNN path for detecting local features and a recurrent convolutional path for extracting contextual information. It could acquire sufficient detailed information and rich contextual information at the same time. In addition, a progressive fusion strategy is proposed for effective feature aggregation at the same scale, adjacent scales and all scales, which is composed by interactive fusion (IF) block, cross-layer fusion (CLF) block and a scale feature fusion (SFF) block. Combine with the feature maps from different paths at the same scale, an IF block is proposed to fuse detailed features with contextual features to obtain fusion features. Meanwhile, a CLF block is proposed to fuse features between adjacent scales to guide low-level feature representation through high-level features. Finally, a SFF block is proposed to recalculate the weights of all scales to realize effective feature aggregation from all scales. Extensive experiments have conducted on three publicly available retinal datasets (DRIVE, CHASEDB1 and STARE). Experimental results show that proposed DPF-Net could achieve a better segmentation results compared to other state-of-the-art methods, especially the proposed progressive fusion strategy indeed promotes feature fusion and significantly boosts the segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助向南采纳,获得10
4秒前
酷波er应助抱抱龙采纳,获得10
5秒前
Natrual完成签到 ,获得积分10
5秒前
y13333完成签到,获得积分10
5秒前
Hello应助Laputa采纳,获得10
6秒前
科研通AI6应助小苹果采纳,获得10
6秒前
8秒前
江東完成签到 ,获得积分10
8秒前
着急的猴完成签到 ,获得积分10
9秒前
殷琛发布了新的文献求助10
10秒前
姜姜发布了新的文献求助10
12秒前
三石呦423发布了新的文献求助50
12秒前
12秒前
第二支羽毛完成签到,获得积分10
12秒前
13秒前
13秒前
抱抱龙发布了新的文献求助10
16秒前
碧蓝丹烟完成签到 ,获得积分10
17秒前
文静的海完成签到,获得积分10
17秒前
Yi羿完成签到 ,获得积分10
20秒前
ll完成签到 ,获得积分10
21秒前
高贵书兰完成签到 ,获得积分10
21秒前
21秒前
852应助学术蝗虫采纳,获得10
22秒前
六幺七完成签到 ,获得积分10
22秒前
23秒前
不与仙同完成签到 ,获得积分10
25秒前
xmsyq完成签到 ,获得积分10
26秒前
28秒前
科研通AI6应助三石呦423采纳,获得10
29秒前
昔年若许完成签到,获得积分10
31秒前
31秒前
李鹏辉完成签到 ,获得积分10
33秒前
34秒前
打打应助不拿拿采纳,获得10
34秒前
511完成签到 ,获得积分10
35秒前
六幺七关注了科研通微信公众号
36秒前
37秒前
sx完成签到,获得积分10
38秒前
年糕111发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627596
求助须知:如何正确求助?哪些是违规求助? 4714216
关于积分的说明 14962790
捐赠科研通 4785168
什么是DOI,文献DOI怎么找? 2555019
邀请新用户注册赠送积分活动 1516447
关于科研通互助平台的介绍 1476819