亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DPF-Net: A Dual-Path Progressive Fusion Network for Retinal Vessel Segmentation

计算机科学 人工智能 特征(语言学) 块(置换群论) 分割 卷积神经网络 模式识别(心理学) 编码器 路径(计算) 计算机视觉 深度学习 数学 哲学 语言学 几何学 程序设计语言 操作系统
作者
Jianyong Li,Ge Gao,Lei Yang,Gui‐Bin Bian,Yanhong Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:45
标识
DOI:10.1109/tim.2023.3277946
摘要

Precise segmentation of retinal vessels from fundus images is essential for intervention in numerous diseases, and helpful in preventing and treating blindness. Deep convolutional neural network (DCNN) based approaches have achieved an excellent success in the automatic segmentation of retinal vessels. However, a single convolutional neural network (CNN) structure can only capture limited local features and lack the ability to extract global contexts. Meanwhile, the strategies used for the feature fusion of low-level detail information with high-level semantic information fail to handle the phenomenon of the semantic gap issue between encoder and decoder validly. Therefore, high-precision segmentation of retinal vessels still remains a challenging task. In this paper, a dual-path progressive fusion network, named DPF-Net, is proposed for accurate and end-to-end segmentation of retinal vessels from fundus images. To detect rich feature formation, a dual-path encoder is proposed for effective feature representation, which contains a CNN path for detecting local features and a recurrent convolutional path for extracting contextual information. It could acquire sufficient detailed information and rich contextual information at the same time. In addition, a progressive fusion strategy is proposed for effective feature aggregation at the same scale, adjacent scales and all scales, which is composed by interactive fusion (IF) block, cross-layer fusion (CLF) block and a scale feature fusion (SFF) block. Combine with the feature maps from different paths at the same scale, an IF block is proposed to fuse detailed features with contextual features to obtain fusion features. Meanwhile, a CLF block is proposed to fuse features between adjacent scales to guide low-level feature representation through high-level features. Finally, a SFF block is proposed to recalculate the weights of all scales to realize effective feature aggregation from all scales. Extensive experiments have conducted on three publicly available retinal datasets (DRIVE, CHASEDB1 and STARE). Experimental results show that proposed DPF-Net could achieve a better segmentation results compared to other state-of-the-art methods, especially the proposed progressive fusion strategy indeed promotes feature fusion and significantly boosts the segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默善愁发布了新的文献求助10
刚刚
3秒前
10秒前
47秒前
善学以致用应助朱杰鑫采纳,获得10
1分钟前
1分钟前
朱杰鑫发布了新的文献求助10
1分钟前
老傅发布了新的文献求助10
1分钟前
ding应助朱杰鑫采纳,获得10
1分钟前
shanyuyulai完成签到 ,获得积分10
1分钟前
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
朱杰鑫发布了新的文献求助10
1分钟前
朱杰鑫完成签到,获得积分10
1分钟前
刘小小完成签到,获得积分20
2分钟前
无用的老董西完成签到 ,获得积分10
2分钟前
2分钟前
浮曳发布了新的文献求助10
3分钟前
3分钟前
刘小小发布了新的文献求助10
3分钟前
浮曳完成签到,获得积分10
3分钟前
3分钟前
舒适的涑完成签到 ,获得积分10
3分钟前
4分钟前
星火完成签到,获得积分10
4分钟前
星之芋发布了新的文献求助10
4分钟前
雪流星完成签到 ,获得积分10
4分钟前
4分钟前
FJXTY发布了新的文献求助10
4分钟前
星之芋完成签到,获得积分10
5分钟前
别当真完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
7分钟前
深情安青应助摇摆小狗采纳,获得10
7分钟前
慕青应助boboo采纳,获得10
8分钟前
af完成签到,获得积分10
8分钟前
绫小路发布了新的文献求助10
8分钟前
8分钟前
科研通AI2S应助绫小路采纳,获得10
9分钟前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5386095
求助须知:如何正确求助?哪些是违规求助? 4508507
关于积分的说明 14030061
捐赠科研通 4418852
什么是DOI,文献DOI怎么找? 2427250
邀请新用户注册赠送积分活动 1419980
关于科研通互助平台的介绍 1398699