DPF-Net: A Dual-Path Progressive Fusion Network for Retinal Vessel Segmentation

计算机科学 人工智能 特征(语言学) 块(置换群论) 分割 卷积神经网络 模式识别(心理学) 编码器 路径(计算) 计算机视觉 深度学习 数学 哲学 语言学 几何学 程序设计语言 操作系统
作者
Jianyong Li,Ge Gao,Lei Yang,Gui‐Bin Bian,Yanhong Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:13
标识
DOI:10.1109/tim.2023.3277946
摘要

Precise segmentation of retinal vessels from fundus images is essential for intervention in numerous diseases, and helpful in preventing and treating blindness. Deep convolutional neural network (DCNN) based approaches have achieved an excellent success in the automatic segmentation of retinal vessels. However, a single convolutional neural network (CNN) structure can only capture limited local features and lack the ability to extract global contexts. Meanwhile, the strategies used for the feature fusion of low-level detail information with high-level semantic information fail to handle the phenomenon of the semantic gap issue between encoder and decoder validly. Therefore, high-precision segmentation of retinal vessels still remains a challenging task. In this paper, a dual-path progressive fusion network, named DPF-Net, is proposed for accurate and end-to-end segmentation of retinal vessels from fundus images. To detect rich feature formation, a dual-path encoder is proposed for effective feature representation, which contains a CNN path for detecting local features and a recurrent convolutional path for extracting contextual information. It could acquire sufficient detailed information and rich contextual information at the same time. In addition, a progressive fusion strategy is proposed for effective feature aggregation at the same scale, adjacent scales and all scales, which is composed by interactive fusion (IF) block, cross-layer fusion (CLF) block and a scale feature fusion (SFF) block. Combine with the feature maps from different paths at the same scale, an IF block is proposed to fuse detailed features with contextual features to obtain fusion features. Meanwhile, a CLF block is proposed to fuse features between adjacent scales to guide low-level feature representation through high-level features. Finally, a SFF block is proposed to recalculate the weights of all scales to realize effective feature aggregation from all scales. Extensive experiments have conducted on three publicly available retinal datasets (DRIVE, CHASEDB1 and STARE). Experimental results show that proposed DPF-Net could achieve a better segmentation results compared to other state-of-the-art methods, especially the proposed progressive fusion strategy indeed promotes feature fusion and significantly boosts the segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆柒捌发布了新的文献求助10
刚刚
Lei完成签到,获得积分10
刚刚
兴奋悟空完成签到 ,获得积分10
1秒前
呼呼兔完成签到,获得积分10
1秒前
mimimi完成签到,获得积分10
2秒前
King完成签到,获得积分10
2秒前
2秒前
李浩完成签到,获得积分10
3秒前
ZCY完成签到,获得积分10
3秒前
4秒前
烟雾里完成签到 ,获得积分10
4秒前
4秒前
隐形曼青应助任性的人达采纳,获得10
4秒前
Bsisoy完成签到,获得积分10
4秒前
黄紫红蓝完成签到,获得积分10
5秒前
SS完成签到,获得积分10
5秒前
是是是WQ完成签到 ,获得积分0
6秒前
且放青山远完成签到,获得积分10
6秒前
7秒前
立里发布了新的文献求助10
7秒前
sunflower完成签到,获得积分10
8秒前
lebron完成签到,获得积分10
8秒前
娃哈哈关注了科研通微信公众号
8秒前
hap完成签到,获得积分10
9秒前
9秒前
Reyi完成签到,获得积分10
9秒前
9秒前
Xiaohu发布了新的文献求助10
9秒前
乐观的颦发布了新的文献求助10
9秒前
10秒前
雨恋凡尘完成签到,获得积分10
10秒前
bkagyin应助端庄断秋采纳,获得10
11秒前
王维维完成签到 ,获得积分10
11秒前
小马甲应助陆柒捌采纳,获得10
12秒前
快醒醒吖佳完成签到,获得积分10
13秒前
SnEBiotech完成签到,获得积分10
14秒前
英姑应助勤劳野狼采纳,获得10
14秒前
nightmoonsun完成签到,获得积分10
14秒前
陈予完成签到,获得积分10
15秒前
是玥玥啊完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099914
求助须知:如何正确求助?哪些是违规求助? 2751373
关于积分的说明 7613446
捐赠科研通 2403368
什么是DOI,文献DOI怎么找? 1275253
科研通“疑难数据库(出版商)”最低求助积分说明 616318
版权声明 599053