DPF-Net: A Dual-Path Progressive Fusion Network for Retinal Vessel Segmentation

计算机科学 人工智能 特征(语言学) 块(置换群论) 分割 卷积神经网络 模式识别(心理学) 编码器 路径(计算) 计算机视觉 深度学习 数学 哲学 操作系统 程序设计语言 语言学 几何学
作者
Jianyong Li,Ge Gao,Lei Yang,Gui‐Bin Bian,Yanhong Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:25
标识
DOI:10.1109/tim.2023.3277946
摘要

Precise segmentation of retinal vessels from fundus images is essential for intervention in numerous diseases, and helpful in preventing and treating blindness. Deep convolutional neural network (DCNN) based approaches have achieved an excellent success in the automatic segmentation of retinal vessels. However, a single convolutional neural network (CNN) structure can only capture limited local features and lack the ability to extract global contexts. Meanwhile, the strategies used for the feature fusion of low-level detail information with high-level semantic information fail to handle the phenomenon of the semantic gap issue between encoder and decoder validly. Therefore, high-precision segmentation of retinal vessels still remains a challenging task. In this paper, a dual-path progressive fusion network, named DPF-Net, is proposed for accurate and end-to-end segmentation of retinal vessels from fundus images. To detect rich feature formation, a dual-path encoder is proposed for effective feature representation, which contains a CNN path for detecting local features and a recurrent convolutional path for extracting contextual information. It could acquire sufficient detailed information and rich contextual information at the same time. In addition, a progressive fusion strategy is proposed for effective feature aggregation at the same scale, adjacent scales and all scales, which is composed by interactive fusion (IF) block, cross-layer fusion (CLF) block and a scale feature fusion (SFF) block. Combine with the feature maps from different paths at the same scale, an IF block is proposed to fuse detailed features with contextual features to obtain fusion features. Meanwhile, a CLF block is proposed to fuse features between adjacent scales to guide low-level feature representation through high-level features. Finally, a SFF block is proposed to recalculate the weights of all scales to realize effective feature aggregation from all scales. Extensive experiments have conducted on three publicly available retinal datasets (DRIVE, CHASEDB1 and STARE). Experimental results show that proposed DPF-Net could achieve a better segmentation results compared to other state-of-the-art methods, especially the proposed progressive fusion strategy indeed promotes feature fusion and significantly boosts the segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故意的问安完成签到 ,获得积分10
刚刚
故意的问安完成签到 ,获得积分10
刚刚
Jasper应助威武飞双采纳,获得10
刚刚
刚刚
一期一会发布了新的文献求助10
1秒前
SZY完成签到,获得积分10
1秒前
完美世界应助SQ采纳,获得10
1秒前
SUN完成签到 ,获得积分10
1秒前
2秒前
烟花应助小北采纳,获得10
2秒前
Yongjiang完成签到,获得积分10
2秒前
只是个赠品完成签到,获得积分10
2秒前
李健完成签到,获得积分10
2秒前
充电宝应助调皮初蓝采纳,获得10
3秒前
个性的紫菜应助彩色孤晴采纳,获得30
3秒前
YBR发布了新的文献求助10
3秒前
紫烨完成签到,获得积分10
3秒前
scy发布了新的文献求助10
3秒前
ccj发布了新的文献求助10
3秒前
xjcy应助正直芒果采纳,获得10
3秒前
4秒前
xingxinghan完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
精神稳定发布了新的文献求助10
7秒前
Mrrr完成签到,获得积分10
7秒前
7秒前
SQ完成签到,获得积分10
9秒前
12345678完成签到,获得积分10
9秒前
木棉完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
QSZ应助666采纳,获得10
9秒前
Nathaniel发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4588123
求助须知:如何正确求助?哪些是违规求助? 4003732
关于积分的说明 12394936
捐赠科研通 3680328
什么是DOI,文献DOI怎么找? 2028598
邀请新用户注册赠送积分活动 1062082
科研通“疑难数据库(出版商)”最低求助积分说明 948086