DPF-Net: A Dual-Path Progressive Fusion Network for Retinal Vessel Segmentation

计算机科学 人工智能 特征(语言学) 块(置换群论) 分割 卷积神经网络 模式识别(心理学) 编码器 路径(计算) 计算机视觉 深度学习 数学 哲学 操作系统 程序设计语言 语言学 几何学
作者
Jianyong Li,Ge Gao,Lei Yang,Gui‐Bin Bian,Yanhong Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:13
标识
DOI:10.1109/tim.2023.3277946
摘要

Precise segmentation of retinal vessels from fundus images is essential for intervention in numerous diseases, and helpful in preventing and treating blindness. Deep convolutional neural network (DCNN) based approaches have achieved an excellent success in the automatic segmentation of retinal vessels. However, a single convolutional neural network (CNN) structure can only capture limited local features and lack the ability to extract global contexts. Meanwhile, the strategies used for the feature fusion of low-level detail information with high-level semantic information fail to handle the phenomenon of the semantic gap issue between encoder and decoder validly. Therefore, high-precision segmentation of retinal vessels still remains a challenging task. In this paper, a dual-path progressive fusion network, named DPF-Net, is proposed for accurate and end-to-end segmentation of retinal vessels from fundus images. To detect rich feature formation, a dual-path encoder is proposed for effective feature representation, which contains a CNN path for detecting local features and a recurrent convolutional path for extracting contextual information. It could acquire sufficient detailed information and rich contextual information at the same time. In addition, a progressive fusion strategy is proposed for effective feature aggregation at the same scale, adjacent scales and all scales, which is composed by interactive fusion (IF) block, cross-layer fusion (CLF) block and a scale feature fusion (SFF) block. Combine with the feature maps from different paths at the same scale, an IF block is proposed to fuse detailed features with contextual features to obtain fusion features. Meanwhile, a CLF block is proposed to fuse features between adjacent scales to guide low-level feature representation through high-level features. Finally, a SFF block is proposed to recalculate the weights of all scales to realize effective feature aggregation from all scales. Extensive experiments have conducted on three publicly available retinal datasets (DRIVE, CHASEDB1 and STARE). Experimental results show that proposed DPF-Net could achieve a better segmentation results compared to other state-of-the-art methods, especially the proposed progressive fusion strategy indeed promotes feature fusion and significantly boosts the segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
11发布了新的文献求助10
2秒前
大个应助limof采纳,获得10
2秒前
3秒前
竹筏过海应助chen采纳,获得50
4秒前
4秒前
schoolboy发布了新的文献求助10
4秒前
完美世界应助洛尚采纳,获得10
4秒前
苹果萧发布了新的文献求助10
5秒前
钟是一梦发布了新的文献求助10
6秒前
Lucas应助Light采纳,获得10
7秒前
7秒前
7秒前
李健的粉丝团团长应助Ll采纳,获得10
7秒前
7秒前
JQKing完成签到,获得积分10
8秒前
8秒前
zs完成签到 ,获得积分10
8秒前
8秒前
11完成签到,获得积分20
8秒前
一定会更好的完成签到,获得积分10
9秒前
Pangsj发布了新的文献求助10
9秒前
姆姆完成签到,获得积分10
9秒前
领导范儿应助落晨采纳,获得10
9秒前
10秒前
善良的安卉完成签到,获得积分10
10秒前
淡定吃吃发布了新的文献求助10
11秒前
yyf关闭了yyf文献求助
11秒前
12秒前
kokodayour完成签到,获得积分10
12秒前
Quin完成签到,获得积分10
12秒前
12秒前
冷艳乐松完成签到,获得积分10
13秒前
13秒前
13秒前
诸葛雪兰完成签到,获得积分10
14秒前
洛尚完成签到,获得积分10
14秒前
czq完成签到,获得积分10
14秒前
VVhahaha完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740