Computational Modeling of Human Serum Albumin Binding of Per- and Polyfluoroalkyl Substances Employing QSAR, Read-Across, and Docking

数量结构-活动关系 结合亲和力 化学 人血清白蛋白 生物信息学 对接(动物) 亲缘关系 生物累积 拓扑指数 立体化学 计算化学 生物化学 环境化学 基因 医学 受体 护理部
作者
A Gallagher,Supratik Kar,Marı́a S. Sepúlveda
出处
期刊:Molecules [MDPI AG]
卷期号:28 (14): 5375-5375 被引量:2
标识
DOI:10.3390/molecules28145375
摘要

Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals in widespread use that have been shown to be toxic to wildlife and humans. Human serum albumin (HSA) is a known transport protein that binds PFAS at various sites, leading to bioaccumulation and long-term toxicity. In silico tools like quantitative structure-activity relationship (QSAR), read-across, and quantitative read-across structure-property relationship (q-RASPR) are proven techniques for modeling chemical toxicity based on experimental data which can be used to predict the toxicity of untested and new chemicals, while at the same time, help to identify the major features responsible for toxicity. Classification-based and regression-based QSAR models are employed in the present study to predict the binding affinities of 24 PFAS to HSA. Regression-based QSAR models revealed that the packing density index (PDI) and quantitative estimation of drug-likeness (QED) descriptors were both positively correlated with higher binding affinity, while the classification-based QSAR model showed the average connectivity index of order 4 (X4A) descriptor was inversely correlated with binding affinity. Whereas molecular docking studies suggested that PFAS with the highest binding affinity to HSA create hydrogen bonds with Arg348 and salt bridges with Arg348 and Arg485, PFAS with lower binding affinity either showed no interactions with either amino acid or only interactions with Arg348. Among the studied PFAS, perfluoroalkyl acids (PFAA) with large carbon chain length (>C10) have one of the lowest binding affinities, compared to PFAA with carbon chain length ranging from 7 to 9, which showed the highest affinity to HSA. Generalized Read-Across (GenRA) was used to predict toxicity outcomes for the top five highest binding affinity PFAS based on 10 structural analogs for each and found that all are predicted as being chronic to sub-chronically toxic to HSA. The developed in silico models presented in this work can provide a framework for designing PFAS alternatives, screening compounds currently in use, and for the study of PFAS mixture toxicity, which is an area of intense research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靳予完成签到,获得积分10
刚刚
放空鬼马完成签到,获得积分10
刚刚
赘婿应助Jacky采纳,获得10
1秒前
科研通AI2S应助佳沫采纳,获得10
1秒前
2秒前
iUi给iUi的求助进行了留言
2秒前
2秒前
2秒前
Zhou完成签到,获得积分10
4秒前
科目三应助务实仙人掌采纳,获得10
5秒前
ding应助避橙采纳,获得10
5秒前
6秒前
虚幻哦哦完成签到,获得积分20
6秒前
大个应助快乐小狗采纳,获得10
6秒前
好好读书好好完成签到 ,获得积分10
7秒前
精分的猫发布了新的文献求助10
7秒前
7秒前
开放菀完成签到 ,获得积分10
8秒前
8秒前
哈哈哈完成签到,获得积分10
9秒前
Akim应助无限静珊采纳,获得10
9秒前
康兴宇完成签到 ,获得积分10
9秒前
陌路完成签到,获得积分10
10秒前
10秒前
酷波er应助zz采纳,获得10
10秒前
10秒前
11秒前
11秒前
哈哈哈发布了新的文献求助10
11秒前
南鸢发布了新的文献求助10
11秒前
12秒前
爆米花应助5114采纳,获得10
12秒前
科研小民工完成签到,获得积分10
12秒前
繁荣的凡英完成签到,获得积分10
13秒前
阳光海云应助Jacky采纳,获得10
13秒前
小巧的映易完成签到,获得积分10
13秒前
Akim应助火星天采纳,获得10
13秒前
gbl七发布了新的文献求助10
13秒前
14秒前
叶嘢嘢发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156574
求助须知:如何正确求助?哪些是违规求助? 2808051
关于积分的说明 7875794
捐赠科研通 2466300
什么是DOI,文献DOI怎么找? 1312843
科研通“疑难数据库(出版商)”最低求助积分说明 630280
版权声明 601919