Computational Modeling of Human Serum Albumin Binding of Per- and Polyfluoroalkyl Substances Employing QSAR, Read-Across, and Docking

数量结构-活动关系 结合亲和力 化学 人血清白蛋白 生物信息学 对接(动物) 亲缘关系 生物累积 拓扑指数 立体化学 计算化学 生物化学 环境化学 基因 受体 护理部 医学
作者
A Gallagher,Supratik Kar,Marı́a S. Sepúlveda
出处
期刊:Molecules [Multidisciplinary Digital Publishing Institute]
卷期号:28 (14): 5375-5375 被引量:2
标识
DOI:10.3390/molecules28145375
摘要

Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals in widespread use that have been shown to be toxic to wildlife and humans. Human serum albumin (HSA) is a known transport protein that binds PFAS at various sites, leading to bioaccumulation and long-term toxicity. In silico tools like quantitative structure-activity relationship (QSAR), read-across, and quantitative read-across structure-property relationship (q-RASPR) are proven techniques for modeling chemical toxicity based on experimental data which can be used to predict the toxicity of untested and new chemicals, while at the same time, help to identify the major features responsible for toxicity. Classification-based and regression-based QSAR models are employed in the present study to predict the binding affinities of 24 PFAS to HSA. Regression-based QSAR models revealed that the packing density index (PDI) and quantitative estimation of drug-likeness (QED) descriptors were both positively correlated with higher binding affinity, while the classification-based QSAR model showed the average connectivity index of order 4 (X4A) descriptor was inversely correlated with binding affinity. Whereas molecular docking studies suggested that PFAS with the highest binding affinity to HSA create hydrogen bonds with Arg348 and salt bridges with Arg348 and Arg485, PFAS with lower binding affinity either showed no interactions with either amino acid or only interactions with Arg348. Among the studied PFAS, perfluoroalkyl acids (PFAA) with large carbon chain length (>C10) have one of the lowest binding affinities, compared to PFAA with carbon chain length ranging from 7 to 9, which showed the highest affinity to HSA. Generalized Read-Across (GenRA) was used to predict toxicity outcomes for the top five highest binding affinity PFAS based on 10 structural analogs for each and found that all are predicted as being chronic to sub-chronically toxic to HSA. The developed in silico models presented in this work can provide a framework for designing PFAS alternatives, screening compounds currently in use, and for the study of PFAS mixture toxicity, which is an area of intense research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小雪糕完成签到,获得积分10
刚刚
大方弘文完成签到,获得积分10
1秒前
叶子完成签到,获得积分10
1秒前
1秒前
该房地产个人的完成签到,获得积分10
2秒前
runer发布了新的文献求助10
2秒前
冯宇完成签到,获得积分20
2秒前
乐乐应助lqkcqmu采纳,获得30
3秒前
Leisure_Lee发布了新的文献求助30
5秒前
过氧化氢应助[刘小婷]采纳,获得10
5秒前
华仔应助小马过河采纳,获得10
6秒前
丢丢完成签到,获得积分10
6秒前
情怀应助Yellue采纳,获得10
6秒前
终生科研徒刑完成签到 ,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
小陈发布了新的文献求助10
6秒前
7秒前
djf完成签到,获得积分10
7秒前
7秒前
8秒前
FashionBoy应助飘逸秋荷采纳,获得10
8秒前
赘婿应助悲凉的尔蓝采纳,获得10
8秒前
彭于彦祖应助符宇新采纳,获得30
9秒前
hzc应助hui采纳,获得10
10秒前
伊yan完成签到 ,获得积分10
10秒前
10秒前
追寻安柏发布了新的文献求助10
10秒前
antman完成签到,获得积分10
10秒前
阳光彩虹完成签到,获得积分20
10秒前
会撒娇的芷烟完成签到,获得积分10
10秒前
爆米花应助卉酱采纳,获得30
11秒前
领导范儿应助chris采纳,获得10
11秒前
温暖宛儿发布了新的文献求助10
11秒前
Jasper应助lisier采纳,获得10
12秒前
xiaomili发布了新的文献求助10
12秒前
刻苦黎云完成签到,获得积分10
12秒前
小7发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600