Computational Modeling of Human Serum Albumin Binding of Per- and Polyfluoroalkyl Substances Employing QSAR, Read-Across, and Docking

数量结构-活动关系 结合亲和力 化学 人血清白蛋白 生物信息学 对接(动物) 亲缘关系 生物累积 拓扑指数 立体化学 计算化学 生物化学 环境化学 基因 受体 护理部 医学
作者
A Gallagher,Supratik Kar,Marı́a S. Sepúlveda
出处
期刊:Molecules [Multidisciplinary Digital Publishing Institute]
卷期号:28 (14): 5375-5375 被引量:2
标识
DOI:10.3390/molecules28145375
摘要

Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals in widespread use that have been shown to be toxic to wildlife and humans. Human serum albumin (HSA) is a known transport protein that binds PFAS at various sites, leading to bioaccumulation and long-term toxicity. In silico tools like quantitative structure-activity relationship (QSAR), read-across, and quantitative read-across structure-property relationship (q-RASPR) are proven techniques for modeling chemical toxicity based on experimental data which can be used to predict the toxicity of untested and new chemicals, while at the same time, help to identify the major features responsible for toxicity. Classification-based and regression-based QSAR models are employed in the present study to predict the binding affinities of 24 PFAS to HSA. Regression-based QSAR models revealed that the packing density index (PDI) and quantitative estimation of drug-likeness (QED) descriptors were both positively correlated with higher binding affinity, while the classification-based QSAR model showed the average connectivity index of order 4 (X4A) descriptor was inversely correlated with binding affinity. Whereas molecular docking studies suggested that PFAS with the highest binding affinity to HSA create hydrogen bonds with Arg348 and salt bridges with Arg348 and Arg485, PFAS with lower binding affinity either showed no interactions with either amino acid or only interactions with Arg348. Among the studied PFAS, perfluoroalkyl acids (PFAA) with large carbon chain length (>C10) have one of the lowest binding affinities, compared to PFAA with carbon chain length ranging from 7 to 9, which showed the highest affinity to HSA. Generalized Read-Across (GenRA) was used to predict toxicity outcomes for the top five highest binding affinity PFAS based on 10 structural analogs for each and found that all are predicted as being chronic to sub-chronically toxic to HSA. The developed in silico models presented in this work can provide a framework for designing PFAS alternatives, screening compounds currently in use, and for the study of PFAS mixture toxicity, which is an area of intense research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yyyyxxxg完成签到,获得积分10
2秒前
科研通AI2S应助学术laji采纳,获得10
4秒前
韶华若锦完成签到 ,获得积分10
4秒前
雷乾完成签到,获得积分10
5秒前
落落完成签到 ,获得积分0
6秒前
Gu发布了新的文献求助10
7秒前
吸尘器完成签到 ,获得积分10
7秒前
慕言完成签到 ,获得积分10
10秒前
耍酷的冷雪完成签到,获得积分10
10秒前
做不了一点科研完成签到 ,获得积分10
11秒前
wgl200212完成签到,获得积分10
12秒前
温暖霸完成签到,获得积分10
12秒前
四糸乃完成签到,获得积分10
12秒前
St雪完成签到,获得积分10
12秒前
菜头完成签到,获得积分10
15秒前
万里完成签到,获得积分10
16秒前
15940203654完成签到 ,获得积分10
16秒前
orange应助医无止境采纳,获得10
17秒前
xixi很困完成签到 ,获得积分10
17秒前
犹豫的若男完成签到,获得积分10
19秒前
鸡蛋完成签到 ,获得积分10
19秒前
hsiuf完成签到,获得积分10
21秒前
Gu完成签到,获得积分10
21秒前
闻巷雨完成签到 ,获得积分10
22秒前
一八四完成签到,获得积分10
24秒前
大琪哥哥要顺利毕业完成签到 ,获得积分10
24秒前
顾矜应助DR.zhang采纳,获得10
25秒前
疯子不风完成签到,获得积分10
25秒前
mm完成签到 ,获得积分10
26秒前
KingHok完成签到,获得积分10
27秒前
ccx完成签到,获得积分10
28秒前
执着新蕾完成签到,获得积分10
28秒前
pppra完成签到,获得积分10
29秒前
lihaichuan完成签到,获得积分10
29秒前
笑点低的凉面完成签到,获得积分10
30秒前
活力数据线完成签到,获得积分10
31秒前
32秒前
poly完成签到,获得积分10
32秒前
典雅三颜完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188343
求助须知:如何正确求助?哪些是违规求助? 4372620
关于积分的说明 13613734
捐赠科研通 4225939
什么是DOI,文献DOI怎么找? 2318042
邀请新用户注册赠送积分活动 1316607
关于科研通互助平台的介绍 1266283