Computational Modeling of Human Serum Albumin Binding of Per- and Polyfluoroalkyl Substances Employing QSAR, Read-Across, and Docking

数量结构-活动关系 结合亲和力 化学 人血清白蛋白 生物信息学 对接(动物) 亲缘关系 生物累积 拓扑指数 立体化学 计算化学 生物化学 环境化学 基因 受体 护理部 医学
作者
A Gallagher,Supratik Kar,Marı́a S. Sepúlveda
出处
期刊:Molecules [MDPI AG]
卷期号:28 (14): 5375-5375 被引量:2
标识
DOI:10.3390/molecules28145375
摘要

Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals in widespread use that have been shown to be toxic to wildlife and humans. Human serum albumin (HSA) is a known transport protein that binds PFAS at various sites, leading to bioaccumulation and long-term toxicity. In silico tools like quantitative structure-activity relationship (QSAR), read-across, and quantitative read-across structure-property relationship (q-RASPR) are proven techniques for modeling chemical toxicity based on experimental data which can be used to predict the toxicity of untested and new chemicals, while at the same time, help to identify the major features responsible for toxicity. Classification-based and regression-based QSAR models are employed in the present study to predict the binding affinities of 24 PFAS to HSA. Regression-based QSAR models revealed that the packing density index (PDI) and quantitative estimation of drug-likeness (QED) descriptors were both positively correlated with higher binding affinity, while the classification-based QSAR model showed the average connectivity index of order 4 (X4A) descriptor was inversely correlated with binding affinity. Whereas molecular docking studies suggested that PFAS with the highest binding affinity to HSA create hydrogen bonds with Arg348 and salt bridges with Arg348 and Arg485, PFAS with lower binding affinity either showed no interactions with either amino acid or only interactions with Arg348. Among the studied PFAS, perfluoroalkyl acids (PFAA) with large carbon chain length (>C10) have one of the lowest binding affinities, compared to PFAA with carbon chain length ranging from 7 to 9, which showed the highest affinity to HSA. Generalized Read-Across (GenRA) was used to predict toxicity outcomes for the top five highest binding affinity PFAS based on 10 structural analogs for each and found that all are predicted as being chronic to sub-chronically toxic to HSA. The developed in silico models presented in this work can provide a framework for designing PFAS alternatives, screening compounds currently in use, and for the study of PFAS mixture toxicity, which is an area of intense research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
儒雅的斑马完成签到,获得积分10
刚刚
汉堡包应助咕噜仔采纳,获得10
刚刚
FashionBoy应助momo采纳,获得10
刚刚
1秒前
1秒前
2秒前
第七兵团司令完成签到,获得积分10
3秒前
3秒前
qwq应助追梦采纳,获得10
3秒前
3秒前
4秒前
我爱Chem完成签到 ,获得积分10
4秒前
半生发布了新的文献求助30
5秒前
5秒前
成就梦松完成签到,获得积分10
5秒前
byyyy完成签到,获得积分10
5秒前
温暖的俊驰完成签到,获得积分10
6秒前
Isabel完成签到,获得积分10
6秒前
yx应助陈强采纳,获得30
7秒前
sokach发布了新的文献求助10
9秒前
缓慢荔枝发布了新的文献求助10
9秒前
123发布了新的文献求助10
10秒前
天御雪完成签到,获得积分10
10秒前
gen关闭了gen文献求助
10秒前
10秒前
科研通AI5应助oldlee采纳,获得10
11秒前
11秒前
MADKAI发布了新的文献求助10
11秒前
哈哈悦完成签到,获得积分10
11秒前
赘婿应助duoduozs采纳,获得10
11秒前
kai完成签到,获得积分10
12秒前
12秒前
情怀应助xhy采纳,获得10
12秒前
整齐的灭绝完成签到 ,获得积分10
13秒前
充电宝应助船舵采纳,获得10
13秒前
lqphysics完成签到,获得积分10
13秒前
13秒前
小小完成签到 ,获得积分10
14秒前
320me666完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672