Computational Modeling of Human Serum Albumin Binding of Per- and Polyfluoroalkyl Substances Employing QSAR, Read-Across, and Docking

数量结构-活动关系 结合亲和力 化学 人血清白蛋白 生物信息学 对接(动物) 亲缘关系 生物累积 拓扑指数 立体化学 计算化学 生物化学 环境化学 基因 受体 护理部 医学
作者
A Gallagher,Supratik Kar,Marı́a S. Sepúlveda
出处
期刊:Molecules [MDPI AG]
卷期号:28 (14): 5375-5375 被引量:2
标识
DOI:10.3390/molecules28145375
摘要

Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals in widespread use that have been shown to be toxic to wildlife and humans. Human serum albumin (HSA) is a known transport protein that binds PFAS at various sites, leading to bioaccumulation and long-term toxicity. In silico tools like quantitative structure-activity relationship (QSAR), read-across, and quantitative read-across structure-property relationship (q-RASPR) are proven techniques for modeling chemical toxicity based on experimental data which can be used to predict the toxicity of untested and new chemicals, while at the same time, help to identify the major features responsible for toxicity. Classification-based and regression-based QSAR models are employed in the present study to predict the binding affinities of 24 PFAS to HSA. Regression-based QSAR models revealed that the packing density index (PDI) and quantitative estimation of drug-likeness (QED) descriptors were both positively correlated with higher binding affinity, while the classification-based QSAR model showed the average connectivity index of order 4 (X4A) descriptor was inversely correlated with binding affinity. Whereas molecular docking studies suggested that PFAS with the highest binding affinity to HSA create hydrogen bonds with Arg348 and salt bridges with Arg348 and Arg485, PFAS with lower binding affinity either showed no interactions with either amino acid or only interactions with Arg348. Among the studied PFAS, perfluoroalkyl acids (PFAA) with large carbon chain length (>C10) have one of the lowest binding affinities, compared to PFAA with carbon chain length ranging from 7 to 9, which showed the highest affinity to HSA. Generalized Read-Across (GenRA) was used to predict toxicity outcomes for the top five highest binding affinity PFAS based on 10 structural analogs for each and found that all are predicted as being chronic to sub-chronically toxic to HSA. The developed in silico models presented in this work can provide a framework for designing PFAS alternatives, screening compounds currently in use, and for the study of PFAS mixture toxicity, which is an area of intense research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nn发布了新的文献求助10
刚刚
左婷发布了新的文献求助10
刚刚
乐乐应助风笑铃采纳,获得10
1秒前
耍酷问兰完成签到,获得积分10
1秒前
2秒前
越过山丘完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
奔腾小马完成签到,获得积分10
3秒前
王肖宁发布了新的文献求助10
4秒前
4秒前
小草发布了新的文献求助10
6秒前
洁净思萱完成签到,获得积分10
7秒前
dbhfdgsh完成签到,获得积分10
7秒前
xiaoxiao虫完成签到,获得积分20
9秒前
9秒前
liuliu完成签到,获得积分20
9秒前
zxzb发布了新的文献求助10
9秒前
10秒前
shhoing应助王肖宁采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得30
10秒前
打打应助科研通管家采纳,获得10
10秒前
jiangsisi完成签到,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
CR7应助科研通管家采纳,获得20
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
shhoing应助洁净思萱采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
追梦机应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
Zx_1993应助科研通管家采纳,获得10
11秒前
Zx_1993应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
万能图书馆应助97采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540506
求助须知:如何正确求助?哪些是违规求助? 4627108
关于积分的说明 14602337
捐赠科研通 4568126
什么是DOI,文献DOI怎么找? 2504382
邀请新用户注册赠送积分活动 1481998
关于科研通互助平台的介绍 1453645