间充质
生物
下调和上调
转录组
细胞生物学
小RNA
胚胎干细胞
基因表达
信使核糖核酸
基因表达谱
间充质干细胞
基因
分子生物学
遗传学
作者
Christian Schoen,Marjon Bloemen,Carine E L Carels,Gerald W Verhaegh,Rene Van Rheden,Laury A Roa,Jeffrey C Glennon,Johannes W Von den Hoff
出处
期刊:European Journal of Orthodontics
[Oxford University Press]
日期:2023-07-16
摘要
Summary Background In a previous study, we found that the highly conserved hsa-miR-181a-5p is downregulated in palatal fibroblasts of non-syndromic cleft palate-only infants. Objectives To analyze the spatiotemporal expression pattern of mmu-miR-181a-5p during palatogenesis and identify possible mRNA targets and their involved molecular pathways. Material and methods The expression of mmu-miR-181a-5p was analyzed in the developing palates of mouse embryos from E11 to E18 using qPCR and ISH. Mouse embryonic palatal mesenchyme cells from E13 were used to analyze mmu-miR-181a-5p expression during osteogenic differentiation. Differential mRNA expression and target identification were analyzed using whole transcriptome RNA sequencing after transfection with a mmu-miR-181a-5p mimic. Differentially expressed genes were linked with underlying pathways using gene set enrichment analysis. Results The expression of mmm-miR-181a-5p in the palatal shelves increased from E15 and overlapped with palatal osteogenesis. During early osteogenic differentiation, mmu-miR-181a-5p was upregulated. Transient overexpression resulted in 49 upregulated mRNAs and 108 downregulated mRNAs (adjusted P-value < 0.05 and fold change > ± 1.2). Ossification (Stc1, Mmp13) and cell-cycle-related GO terms were significantly enriched for upregulated mRNAs. Analysis of possible mRNA targets indicated significant enrichment of Hippo signaling (Ywhag, Amot, Frmd6 and Serpine1) and GO terms related to cell migration and angiogenesis. Limitations Transient overexpression of mmu-miR-181a-5p in mouse embryonic palatal mesenchyme cells limited its analysis to early osteogenesis. Conclusion Mmu-miR-181-5p expression is increased in the developing palatal shelves in areas of bone formation and targets regulators of the Hippo signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI