Model-Agnostic Decentralized Collaborative Learning for On-Device POI Recommendation

计算机科学 协同过滤 移动设备 推荐系统 数据挖掘 兴趣点 相似性(几何) 情报检索 机器学习 人工智能 万维网 图像(数学)
作者
Jing Long,Tong Chen,Quoc Viet Hung Nguyen,Guandong Xu,Kai Zheng,Hongzhi Yin
标识
DOI:10.1145/3539618.3591733
摘要

As an indispensable personalized service in Location-based Social Networks (LBSNs), the next Point-of-Interest (POI) recommendation aims to help people discover attractive and interesting places. Currently, most POI recommenders are based on the conventional centralized paradigm that heavily relies on the cloud to train the recommendation models with large volumes of collected users' sensitive check-in data. Although a few recent works have explored on-device frameworks for resilient and privacy-preserving POI recommendations, they invariably hold the assumption of model homogeneity for parameters/gradients aggregation and collaboration. However, users' mobile devices in the real world have various hardware configurations (e.g., compute resources), leading to heterogeneous on-device models with different architectures and sizes. In light of this, We propose a novel on-device POI recommendation framework, namely Model-Agnostic Collaborative learning for on-device POI recommendation (MAC), allowing users to customize their own model structures (e.g., dimension & number of hidden layers). To counteract the sparsity of on-device user data, we propose to pre-select neighbors for collaboration based on physical distances, category-level preferences, and social networks. To assimilate knowledge from the above-selected neighbors in an efficient and secure way, we adopt the knowledge distillation framework with mutual information maximization. Instead of sharing sensitive models/gradients, clients in MAC only share their soft decisions on a preloaded reference dataset. To filter out low-quality neighbors, we propose two sampling strategies, performance-triggered sampling and similarity-based sampling, to speed up the training process and obtain optimal recommenders. In addition, we design two novel approaches to generate more effective reference datasets while protecting users' privacy. Extensive experiments on two datasets have shown the superiority of MAC over advanced baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顾矜应助qq采纳,获得10
1秒前
2秒前
小w完成签到,获得积分10
2秒前
2秒前
khc完成签到,获得积分10
3秒前
Marianna发布了新的文献求助10
3秒前
唠叨的柜子完成签到,获得积分10
3秒前
3秒前
3秒前
ls完成签到,获得积分10
3秒前
斑马发布了新的文献求助10
4秒前
4秒前
Doreen完成签到,获得积分10
5秒前
灰灰完成签到,获得积分10
5秒前
5秒前
科研民工李完成签到,获得积分10
6秒前
6秒前
Migrol完成签到,获得积分10
6秒前
熄熄发布了新的文献求助10
6秒前
xuxu发布了新的文献求助10
7秒前
7秒前
Lily完成签到,获得积分10
7秒前
zhangnan完成签到,获得积分10
7秒前
光亮妙之完成签到,获得积分10
7秒前
科研通AI5应助khc采纳,获得80
8秒前
8秒前
LamChem发布了新的文献求助10
8秒前
9秒前
bkagyin应助Marianna采纳,获得10
9秒前
9秒前
10秒前
xiong发布了新的文献求助30
10秒前
10秒前
10秒前
橘络完成签到 ,获得积分10
10秒前
10秒前
汉堡包应助火星上代芙采纳,获得10
11秒前
11秒前
飞鸟完成签到,获得积分10
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773842
求助须知:如何正确求助?哪些是违规求助? 3319455
关于积分的说明 10195161
捐赠科研通 3034050
什么是DOI,文献DOI怎么找? 1664925
邀请新用户注册赠送积分活动 796399
科研通“疑难数据库(出版商)”最低求助积分说明 757443