Early Detection of Infant Cerebral Palsy Risk based on Pose Estimation using OpenPose and Advanced Algorithms from Limited and Imbalance Dataset

脑瘫 异常 计算机科学 卷积神经网络 人工智能 分类器(UML) 循环神经网络 估计 机器学习 深度学习 模式识别(心理学) 人工神经网络 物理医学与康复 医学 精神科 管理 经济
作者
Endah Suryawati Ningrum,Eko Mulyanto Yuniarno,Mauridhi Hery Purnomo
标识
DOI:10.1109/memea57477.2023.10171951
摘要

Detection of the risk of cerebral palsy existance in infant phase is critical during human development. The fidgety movements of infant during this phase plays an important role in indication of normal or abnormality of balanced and coordination. Previous researches have shown the possibility of abnormality detection using infant pose estimation. However, in particular for predicting the risk of cerebral palsy (CP) based on the estimation of the infant's movement poses, it is not optimal in its classification due to the rarity of dataset sources. This research aimed to develop a classifier based on OpenPose and advanced algorithms, including a Long Short-Term Memory (LSTM) network, 1-dimensional Convolutional Neural Network (CNN) combined with LSTM, and Gated Recurrent Unit (GRU), to predict the likelihood of cerebral palsy in infants, where amount of data is limited and there is an imbalance in categories. Such dataset was obtained from Chambers et al. and divided into 'at-risk' and 'healthy' categories. This research evaluates the performance of different algorithms in classifying infants with cerebral palsy and those without. After perfecting the model, ID CNN combined with LSTM outperformed other models with an accuracy of 0.96. Meanwhile, GRU achieved an accuracy of 0.83, and LSTM achieved an accuracy of 0.77. This research also highlights the potential of using OpenPose and advanced algorithms to accurately predict and prevent cerebral palsy in infants, providing valuable insights for future research in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文卿完成签到,获得积分10
刚刚
刚刚
酷酷李可爱婕完成签到 ,获得积分10
1秒前
乐乐应助张阳采纳,获得10
2秒前
2秒前
2秒前
领导范儿应助珂小小采纳,获得10
2秒前
666完成签到,获得积分10
2秒前
假装有昵称完成签到,获得积分10
2秒前
2秒前
zyy完成签到,获得积分10
3秒前
LinglongCai完成签到 ,获得积分10
4秒前
wdy111应助jjjjchou采纳,获得20
4秒前
胡博云完成签到,获得积分10
4秒前
11完成签到,获得积分10
5秒前
SL完成签到,获得积分10
5秒前
慕青应助笑点低的不采纳,获得10
5秒前
铜W完成签到,获得积分20
5秒前
5秒前
林夏发布了新的文献求助10
6秒前
凉凉盛夏完成签到,获得积分10
6秒前
123完成签到,获得积分10
6秒前
八百标兵奔北坡完成签到,获得积分10
6秒前
上官若男应助靓丽的发箍采纳,获得10
6秒前
6秒前
7秒前
微笑的桐完成签到 ,获得积分20
7秒前
丘比特应助树上种树采纳,获得10
7秒前
H28G发布了新的文献求助10
8秒前
儒雅致远发布了新的文献求助10
8秒前
ding应助六六安安采纳,获得10
9秒前
9秒前
铜W发布了新的文献求助10
9秒前
nron发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
他方世界发布了新的文献求助10
10秒前
10秒前
Unshouable完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582