Early Detection of Infant Cerebral Palsy Risk based on Pose Estimation using OpenPose and Advanced Algorithms from Limited and Imbalance Dataset

脑瘫 异常 计算机科学 卷积神经网络 人工智能 分类器(UML) 循环神经网络 估计 机器学习 深度学习 模式识别(心理学) 人工神经网络 物理医学与康复 医学 精神科 管理 经济
作者
Endah Suryawati Ningrum,Eko Mulyanto Yuniarno,Mauridhi Hery Purnomo
标识
DOI:10.1109/memea57477.2023.10171951
摘要

Detection of the risk of cerebral palsy existance in infant phase is critical during human development. The fidgety movements of infant during this phase plays an important role in indication of normal or abnormality of balanced and coordination. Previous researches have shown the possibility of abnormality detection using infant pose estimation. However, in particular for predicting the risk of cerebral palsy (CP) based on the estimation of the infant's movement poses, it is not optimal in its classification due to the rarity of dataset sources. This research aimed to develop a classifier based on OpenPose and advanced algorithms, including a Long Short-Term Memory (LSTM) network, 1-dimensional Convolutional Neural Network (CNN) combined with LSTM, and Gated Recurrent Unit (GRU), to predict the likelihood of cerebral palsy in infants, where amount of data is limited and there is an imbalance in categories. Such dataset was obtained from Chambers et al. and divided into 'at-risk' and 'healthy' categories. This research evaluates the performance of different algorithms in classifying infants with cerebral palsy and those without. After perfecting the model, ID CNN combined with LSTM outperformed other models with an accuracy of 0.96. Meanwhile, GRU achieved an accuracy of 0.83, and LSTM achieved an accuracy of 0.77. This research also highlights the potential of using OpenPose and advanced algorithms to accurately predict and prevent cerebral palsy in infants, providing valuable insights for future research in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yuki完成签到,获得积分10
刚刚
依然灬聆听完成签到,获得积分10
1秒前
1秒前
小朱完成签到,获得积分10
2秒前
陈一一完成签到 ,获得积分10
2秒前
纸芯完成签到 ,获得积分10
3秒前
NINI完成签到 ,获得积分10
3秒前
蜂鸟5156完成签到,获得积分10
3秒前
溜溜发布了新的文献求助10
5秒前
VDC发布了新的文献求助10
6秒前
Lyuemei完成签到 ,获得积分10
7秒前
恬恬完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
热依汗古丽完成签到,获得积分10
9秒前
HX发布了新的文献求助20
9秒前
10秒前
qian完成签到 ,获得积分10
11秒前
11秒前
Zzzzzzzzzzz发布了新的文献求助10
12秒前
12秒前
12秒前
典雅的果汁完成签到,获得积分20
14秒前
Laus完成签到,获得积分20
15秒前
搜集达人应助gzsy采纳,获得10
15秒前
俭朴夜雪发布了新的文献求助10
15秒前
Hello应助橙橙梨梨茶采纳,获得10
16秒前
认真的rain发布了新的文献求助50
17秒前
深情的鑫鹏完成签到,获得积分10
17秒前
寒涛先生发布了新的文献求助10
18秒前
空心发布了新的文献求助30
18秒前
希望天下0贩的0应助星星采纳,获得10
19秒前
krkr完成签到,获得积分10
19秒前
19秒前
19秒前
科研通AI5应助111111111采纳,获得10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808