Body Composition and Radiomics From 18F-FDG PET/CT Together Help Predict Prognosis for Patients With Stage IV Non–Small Cell Lung Cancer

医学 无线电技术 肺癌 阶段(地层学) 核医学 放射科 PET-CT 正电子发射断层摄影术 肿瘤科 生物 古生物学
作者
Yi Zhang,Weiyue Tan,Zhonghang Zheng,Jie Wang,Ligang Xing,Xiaorong Sun
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (6): 906-912 被引量:3
标识
DOI:10.1097/rct.0000000000001496
摘要

Purpose To determine whether integration of data on body composition and radiomic features obtained using baseline 18 F-FDG positron emission tomography/computed tomography (PET/CT) images can be used to predict the prognosis of patients with stage IV non–small cell lung cancer (NSCLC). Methods A total of 107 patients with stage IV NSCLC were retrospectively enrolled in this study. We used the 3D Slicer (The National Institutes of Health, Bethesda, Maryland) software to extract the features of PET and CT images. Body composition measurements were taken at the L3 level using the Fiji (Curtis Rueden, Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison) software. Independent prognostic factors were defined by performing univariate and multivariate analyses for clinical factors, body composition features, and metabolic parameters. Data on body composition and radiomic features were used to build body composition, radiomics, and integrated (combination of body composition and radiomic features) nomograms. The models were evaluated to determine their prognostic prediction capabilities, calibration, discriminatory abilities, and clinical applicability. Results Eight radiomic features relevant to progression-free survival (PFS) were selected. Multivariate analysis showed that the visceral fat area/subcutaneous fat area ratio independently predicted PFS ( P = 0.040). Using the data for body composition, radiomic features, and integrated features, nomograms were established for the training (areas under the curve = 0.647, 0.736, and 0.803, respectively) and the validation sets (areas under the receiver operating characteristic = 0.625, 0.723, and 0.866, respectively); the integrated model showed better prediction ability than that of the other 2 models. The calibration curves revealed that the integrated nomogram exhibited a better agreement between the estimation and the actual observation in terms of prediction of the probability of PFS than that of the other 2 models. Decision curve analysis revealed that the integrated nomogram was superior to the body composition and radiomics nomograms for predicting clinical benefit. Conclusion Integration of data on body composition and PET/CT radiomic features can help in prediction of outcomes in patients with stage IV NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juan发布了新的文献求助10
刚刚
刚刚
一一应助热情的戾采纳,获得30
1秒前
项烙发布了新的文献求助10
1秒前
2秒前
奋斗绿旋发布了新的文献求助10
2秒前
科研小助理完成签到,获得积分10
3秒前
Grant完成签到,获得积分10
3秒前
4秒前
执着的以晴完成签到,获得积分10
4秒前
房靳发布了新的文献求助100
4秒前
尉迟凌波发布了新的文献求助10
4秒前
5秒前
qq158014169完成签到 ,获得积分10
5秒前
6秒前
6秒前
shuang0116应助简单绯采纳,获得10
6秒前
6秒前
彭于晏应助努尔采纳,获得10
6秒前
8秒前
net80yhm发布了新的文献求助10
8秒前
8秒前
项烙完成签到,获得积分10
9秒前
白方明发布了新的文献求助10
10秒前
10秒前
小柴狗发布了新的文献求助10
10秒前
领导范儿应助年轻采波采纳,获得10
11秒前
桃源theshy发布了新的文献求助10
11秒前
11秒前
13秒前
超级的月亮完成签到,获得积分10
13秒前
冷静靖荷应助热情的戾采纳,获得10
13秒前
可爱的函函应助高等等采纳,获得10
13秒前
科研通AI5应助科研小白采纳,获得10
13秒前
13秒前
13秒前
14秒前
dyh0521完成签到,获得积分20
15秒前
宁双完成签到,获得积分10
15秒前
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476698
求助须知:如何正确求助?哪些是违规求助? 3068270
关于积分的说明 9107322
捐赠科研通 2759775
什么是DOI,文献DOI怎么找? 1514279
邀请新用户注册赠送积分活动 700142
科研通“疑难数据库(出版商)”最低求助积分说明 699329