亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-Attention-Based Convolutional GRU for Enhancement of Adversarial Speech Examples

计算机科学 对抗制 语音识别 稳健性(进化) 人工智能 语音增强 字错误率 公制(单位) 瓶颈 特征(语言学) 一般化 深度学习 模式识别(心理学) 降噪 数学 工程类 数学分析 生物化学 化学 运营管理 语言学 哲学 基因 嵌入式系统
作者
Chaitanya Jannu,Sunny Dayal Vanambathina
出处
期刊:International Journal of Image and Graphics [World Scientific]
卷期号:24 (06) 被引量:1
标识
DOI:10.1142/s0219467824500530
摘要

Recent research has identified adversarial examples which are the challenges to DNN-based ASR systems. In this paper, we propose a new model based on Convolutional GRU and Self-attention U-Net called [Formula: see text] to improve adversarial speech signals. To represent the correlation between neighboring noisy speech frames, a two-Layer GRU is added in the bottleneck of U-Net and an attention gate is inserted in up-sampling units to increase the adversarial stability. The goal of using GRU is to combine the weights sharing technique with the use of gates to control the flow of data across multiple feature maps. As a result, it outperforms the original 1D convolution used in [Formula: see text]. Especially, the performance of the model is evaluated by explainable speech recognition metrics and its performance is analyzed by the improved adversarial training. We used adversarial audio attacks to perform experiments on automatic speech recognition (ASR). We saw (i) the robustness of ASR models which are based on DNN can be improved using the temporal features grasped by the attention-based GRU network; (ii) through adversarial training, including some additive adversarial data augmentation, we could improve the generalization power of Automatic Speech Recognition models which are based on DNN. The word-error-rate (WER) metric confirmed that the enhancement capabilities are better than the state-of-the-art [Formula: see text]. The reason for this enhancement is the ability of GRU units to extract global information within the feature maps. Based on the conducted experiments, the proposed [Formula: see text] increases the score of Speech Transmission Index (STI), Perceptual Evaluation of Speech Quality (PESQ), and the Short-term Objective Intelligibility (STOI) with adversarial speech examples in speech enhancement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc0514gr完成签到,获得积分10
3秒前
HMG1COA完成签到 ,获得积分10
3秒前
leslieo3o发布了新的文献求助10
4秒前
北克完成签到 ,获得积分10
7秒前
7秒前
橘猫123456完成签到,获得积分10
8秒前
小屁孩完成签到,获得积分10
10秒前
11发布了新的文献求助10
12秒前
annis发布了新的文献求助10
14秒前
隐形曼青应助11采纳,获得10
22秒前
0514gr完成签到,获得积分10
23秒前
林狗完成签到 ,获得积分10
24秒前
无限幻枫完成签到,获得积分10
25秒前
annis完成签到,获得积分10
26秒前
28秒前
30秒前
半剖天空发布了新的文献求助50
32秒前
酷波er应助牛顿不吃果采纳,获得10
34秒前
34秒前
11发布了新的文献求助10
35秒前
39秒前
Afterlife34发布了新的文献求助10
39秒前
347u完成签到 ,获得积分10
40秒前
田様应助11采纳,获得10
41秒前
LMH完成签到,获得积分10
42秒前
45秒前
foreverwhy完成签到 ,获得积分10
50秒前
52秒前
11发布了新的文献求助10
55秒前
55秒前
56秒前
李希发布了新的文献求助20
1分钟前
Vincent1990完成签到,获得积分10
1分钟前
打打应助李希采纳,获得20
1分钟前
科研通AI5应助积极泽洋采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得30
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210066
求助须知:如何正确求助?哪些是违规求助? 4387034
关于积分的说明 13662169
捐赠科研通 4246614
什么是DOI,文献DOI怎么找? 2329858
邀请新用户注册赠送积分活动 1327575
关于科研通互助平台的介绍 1280072