Self-Attention-Based Convolutional GRU for Enhancement of Adversarial Speech Examples

计算机科学 对抗制 语音识别 稳健性(进化) 人工智能 语音增强 字错误率 公制(单位) 瓶颈 特征(语言学) 一般化 深度学习 模式识别(心理学) 降噪 数学 工程类 基因 数学分析 哲学 嵌入式系统 生物化学 语言学 化学 运营管理
作者
Chaitanya Jannu,Sunny Dayal Vanambathina
出处
期刊:International Journal of Image and Graphics [World Scientific]
卷期号:24 (06) 被引量:1
标识
DOI:10.1142/s0219467824500530
摘要

Recent research has identified adversarial examples which are the challenges to DNN-based ASR systems. In this paper, we propose a new model based on Convolutional GRU and Self-attention U-Net called [Formula: see text] to improve adversarial speech signals. To represent the correlation between neighboring noisy speech frames, a two-Layer GRU is added in the bottleneck of U-Net and an attention gate is inserted in up-sampling units to increase the adversarial stability. The goal of using GRU is to combine the weights sharing technique with the use of gates to control the flow of data across multiple feature maps. As a result, it outperforms the original 1D convolution used in [Formula: see text]. Especially, the performance of the model is evaluated by explainable speech recognition metrics and its performance is analyzed by the improved adversarial training. We used adversarial audio attacks to perform experiments on automatic speech recognition (ASR). We saw (i) the robustness of ASR models which are based on DNN can be improved using the temporal features grasped by the attention-based GRU network; (ii) through adversarial training, including some additive adversarial data augmentation, we could improve the generalization power of Automatic Speech Recognition models which are based on DNN. The word-error-rate (WER) metric confirmed that the enhancement capabilities are better than the state-of-the-art [Formula: see text]. The reason for this enhancement is the ability of GRU units to extract global information within the feature maps. Based on the conducted experiments, the proposed [Formula: see text] increases the score of Speech Transmission Index (STI), Perceptual Evaluation of Speech Quality (PESQ), and the Short-term Objective Intelligibility (STOI) with adversarial speech examples in speech enhancement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可乐完成签到,获得积分10
2秒前
wdy111举报徐per爱豆求助涉嫌违规
2秒前
3秒前
4秒前
4秒前
漂亮白枫完成签到,获得积分10
5秒前
情怀应助why359采纳,获得10
5秒前
CodeCraft应助wsj采纳,获得10
5秒前
5秒前
领导范儿应助DoctorDiDi采纳,获得10
5秒前
LaTeXer应助勤恳白山采纳,获得80
5秒前
8秒前
小爪冰凉发布了新的文献求助30
8秒前
9秒前
漂亮白枫发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
优雅灵波发布了新的文献求助10
11秒前
kong完成签到,获得积分10
12秒前
12秒前
JJ发布了新的文献求助10
12秒前
幸福大白发布了新的文献求助10
13秒前
14秒前
14秒前
123完成签到,获得积分10
14秒前
Qing完成签到,获得积分10
15秒前
小二郎应助搞笑5次采纳,获得10
15秒前
ZONG发布了新的文献求助20
17秒前
yyyyyyy发布了新的文献求助10
18秒前
勤奋幻柏发布了新的文献求助10
18秒前
why359发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
hahah完成签到,获得积分10
23秒前
伶俐绿柏发布了新的文献求助10
25秒前
狸宝的小果子完成签到 ,获得积分10
25秒前
汉堡包应助wzc采纳,获得10
25秒前
深情安青应助刀锋采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989450
求助须知:如何正确求助?哪些是违规求助? 3531621
关于积分的说明 11254315
捐赠科研通 3270207
什么是DOI,文献DOI怎么找? 1804928
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809176