Self-Attention-Based Convolutional GRU for Enhancement of Adversarial Speech Examples

计算机科学 对抗制 语音识别 稳健性(进化) 人工智能 语音增强 字错误率 公制(单位) 瓶颈 特征(语言学) 一般化 深度学习 模式识别(心理学) 降噪 数学 工程类 数学分析 生物化学 化学 运营管理 语言学 哲学 基因 嵌入式系统
作者
Chaitanya Jannu,Sunny Dayal Vanambathina
出处
期刊:International Journal of Image and Graphics [World Scientific]
标识
DOI:10.1142/s0219467824500530
摘要

Recent research has identified adversarial examples which are the challenges to DNN-based ASR systems. In this paper, we propose a new model based on Convolutional GRU and Self-attention U-Net called [Formula: see text] to improve adversarial speech signals. To represent the correlation between neighboring noisy speech frames, a two-Layer GRU is added in the bottleneck of U-Net and an attention gate is inserted in up-sampling units to increase the adversarial stability. The goal of using GRU is to combine the weights sharing technique with the use of gates to control the flow of data across multiple feature maps. As a result, it outperforms the original 1D convolution used in [Formula: see text]. Especially, the performance of the model is evaluated by explainable speech recognition metrics and its performance is analyzed by the improved adversarial training. We used adversarial audio attacks to perform experiments on automatic speech recognition (ASR). We saw (i) the robustness of ASR models which are based on DNN can be improved using the temporal features grasped by the attention-based GRU network; (ii) through adversarial training, including some additive adversarial data augmentation, we could improve the generalization power of Automatic Speech Recognition models which are based on DNN. The word-error-rate (WER) metric confirmed that the enhancement capabilities are better than the state-of-the-art [Formula: see text]. The reason for this enhancement is the ability of GRU units to extract global information within the feature maps. Based on the conducted experiments, the proposed [Formula: see text] increases the score of Speech Transmission Index (STI), Perceptual Evaluation of Speech Quality (PESQ), and the Short-term Objective Intelligibility (STOI) with adversarial speech examples in speech enhancement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Wzzz完成签到,获得积分10
4秒前
英俊的铭应助Arsenan采纳,获得10
4秒前
4秒前
栋栋完成签到 ,获得积分10
4秒前
iconcrete应助Rainbow采纳,获得10
5秒前
5秒前
6秒前
麦丽素发布了新的文献求助10
6秒前
lbm完成签到,获得积分10
7秒前
Eugene完成签到,获得积分10
9秒前
hwezhu发布了新的文献求助10
10秒前
Wzzz发布了新的文献求助10
10秒前
一一发布了新的文献求助10
11秒前
yannian完成签到,获得积分10
11秒前
Cm完成签到,获得积分20
13秒前
直率的之桃完成签到,获得积分10
14秒前
Cindy应助liangmh采纳,获得10
15秒前
15秒前
沉默的友安完成签到 ,获得积分10
15秒前
purple完成签到 ,获得积分10
16秒前
汉堡包应助hwezhu采纳,获得10
18秒前
19秒前
小管发布了新的文献求助10
19秒前
tgd发布了新的文献求助10
20秒前
KKang发布了新的文献求助30
20秒前
21秒前
21秒前
kang发布了新的文献求助30
21秒前
开心便当完成签到,获得积分10
22秒前
打打应助Guoqiang采纳,获得10
23秒前
百招发布了新的文献求助10
26秒前
爆米花应助雪sung采纳,获得10
26秒前
阿祖完成签到,获得积分10
27秒前
28秒前
逆蝶半灵完成签到,获得积分10
28秒前
29秒前
刘玉梅完成签到,获得积分10
30秒前
31秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3117099
求助须知:如何正确求助?哪些是违规求助? 2767036
关于积分的说明 7689541
捐赠科研通 2422396
什么是DOI,文献DOI怎么找? 1286206
科研通“疑难数据库(出版商)”最低求助积分说明 620271
版权声明 599837