Analysis-ready climate data with ESMValCore and ESMValTool

计算机科学 Python(编程语言) 元数据 PB级 下载 净现金流量 预处理器 笔记本电脑 软件 数据库 网格 JSON文件 代码库 接口(物质) 服务器 数据挖掘 万维网 操作系统 大数据 程序设计语言 最大气泡压力法 气泡 数学 几何学
作者
Bouwe Andela,Peter Kalverla,Remi Kazeroni,Saskia Loosveldt Tomas,V. Predoi,Manuel Schlund,Stef Smeets,Klaus Zimmermann
标识
DOI:10.5194/ems2023-497
摘要

We present new features of ESMValCore, a Python package designed to work with large climate datasets available from ESGF and beyond. The Earth System Grid Federation (ESGF) offers a wealth of climate data that can be used to do interesting research. For example, the latest edition of the Coupled Model Intercomparison Project (CMIP6) output features 20 petabytes of data. However, the heterogeneity of the data can make it difficult to find and work with. ESMValCore now provides a Python interface that makes it easy to discover what data is available on ESGF and locally, download it if necessary, and make it analysis-ready. The analysis-ready data can then be used as input to the ESMValCore preprocessor functions, a collection of functions to perform commonly used analysis steps such as regridding and statistics. When searching for data on ESGF as well as when loading the NetCDF files, the software intelligently corrects small issues in the metadata that otherwise make working with this data a time-consuming, manual effort. Data and metadata issues are fixed in memory for fast performance. The search and download features are user-friendly and will automatically use a different server if one of the ESGF servers is unavailable for some reason. Several Jupyter notebooks demonstrating these new features are available at https://github.com/ESMValGroup/ESMValCore/tree/main/notebooks.  ESMValCore has been designed for use on computing systems that are typically used by researchers: it works well on a laptop or desktop computer, but also comes with example configuration files for use on large compute clusters attached to ESGF nodes. For reliable computations, ESMValCore makes use of the Iris library developed by the UK Met Office. This in turn is built on top of Dask, a library for efficient parallel computations with a low memory footprint. In 2023, we aim to improve our use of Dask in collaboration with the Iris developers, for even better computational performance.  For easy reproducibility, ESMValCore also offers "recipes" in which standard analyses can be saved. A large collection of such recipes is available in the Earth System Model Evaluation Tool (ESMValTool), including recipes for estimating future drought risk. ESMValTool started out as a set of community-developed diagnostics and performance metrics for the evaluation of Earth system models. Recently it has also turned out to be useful for other users of climate data, such as hydrologists and climate change impact researchers. Both ESMValCore and ESMValTool are developed by and for researchers working with climate data, with the support of several research software engineers. An important recent achievement is the use of these packages to produce the figures for several chapters of the IPCC AR6 report. Documentation for both ESMValCore and ESMValTool is available at https://docs.esmvaltool.org. 

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吃猫的鱼完成签到,获得积分10
1秒前
脑洞疼应助润润轩轩采纳,获得10
2秒前
刘文静完成签到,获得积分10
3秒前
Southluuu发布了新的文献求助10
3秒前
chenjyuu发布了新的文献求助10
3秒前
3秒前
粗暴的仙人掌完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
logic发布了新的文献求助10
4秒前
习习应助生动的雨竹采纳,获得10
4秒前
bo完成签到 ,获得积分10
4秒前
迟大猫应助啵乐乐采纳,获得10
5秒前
安雯完成签到 ,获得积分10
5秒前
HuLL完成签到,获得积分10
5秒前
Yolo完成签到 ,获得积分10
5秒前
难过的慕青完成签到,获得积分10
5秒前
7秒前
7秒前
7秒前
8秒前
无花果应助sunzhiyu233采纳,获得10
8秒前
韭黄完成签到,获得积分20
8秒前
9秒前
诚c发布了新的文献求助10
9秒前
自然秋柳完成签到 ,获得积分10
9秒前
我是老大应助经法采纳,获得10
9秒前
默默的皮牙子应助经法采纳,获得10
9秒前
orixero应助经法采纳,获得10
9秒前
小马甲应助经法采纳,获得10
9秒前
柚子成精应助经法采纳,获得10
10秒前
小蘑菇应助经法采纳,获得10
10秒前
深情安青应助经法采纳,获得10
10秒前
李爱国应助经法采纳,获得10
10秒前
共享精神应助经法采纳,获得10
10秒前
yyyyyy完成签到 ,获得积分10
10秒前
LL完成签到,获得积分10
10秒前
ziyiziyi发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759