催化作用
氢氧化物
乙烯
选择性
吸附
化学
无机化学
氢
选择性催化还原
电解
法拉第效率
材料科学
化学工程
电化学
有机化学
电极
物理化学
电解质
工程类
作者
Yufei Cao,Chen Zhu,Peihao Li,Adnan Ozden,Pengfei Ou,Weiyan Ni,Jehad Abed,Erfan Shirzadi,Jinqiang Zhang,David Sinton,Jun Ge,Edward H. Sargent
标识
DOI:10.1038/s41467-023-37898-8
摘要
Performing CO2 reduction in acidic conditions enables high single-pass CO2 conversion efficiency. However, a faster kinetics of the hydrogen evolution reaction compared to CO2 reduction limits the selectivity toward multicarbon products. Prior studies have shown that adsorbed hydroxide on the Cu surface promotes CO2 reduction in neutral and alkaline conditions. We posited that limited adsorbed hydroxide species in acidic CO2 reduction could contribute to a low selectivity to multicarbon products. Here we report an electrodeposited Cu catalyst that suppresses hydrogen formation and promotes selective CO2 reduction in acidic conditions. Using in situ time-resolved Raman spectroscopy, we show that a high concentration of CO and OH on the catalyst surface promotes C-C coupling, a finding that we correlate with evidence of increased CO residence time. The optimized electrodeposited Cu catalyst achieves a 60% faradaic efficiency for ethylene and 90% for multicarbon products. When deployed in a slim flow cell, the catalyst attains a 20% energy efficiency to ethylene, and 30% to multicarbon products.
科研通智能强力驱动
Strongly Powered by AbleSci AI