亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

UTSGAN: Unseen Transition Suss GAN for Transition-Aware Image-to-image Translation

一致性(知识库) 过渡(遗传学) 计算机科学 正规化(语言学) 翻译(生物学) 人工智能 图像(数学) 编码器 理论计算机科学 自然语言处理 算法 生物化学 化学 信使核糖核酸 基因 操作系统
作者
Yaxin Shi,Xiaowei Zhou,Ping Liu,Ivor W. Tsang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2304.11955
摘要

In the field of Image-to-Image (I2I) translation, ensuring consistency between input images and their translated results is a key requirement for producing high-quality and desirable outputs. Previous I2I methods have relied on result consistency, which enforces consistency between the translated results and the ground truth output, to achieve this goal. However, result consistency is limited in its ability to handle complex and unseen attribute changes in translation tasks. To address this issue, we introduce a transition-aware approach to I2I translation, where the data translation mapping is explicitly parameterized with a transition variable, allowing for the modelling of unobserved translations triggered by unseen transitions. Furthermore, we propose the use of transition consistency, defined on the transition variable, to enable regularization of consistency on unobserved translations, which is omitted in previous works. Based on these insights, we present Unseen Transition Suss GAN (UTSGAN), a generative framework that constructs a manifold for the transition with a stochastic transition encoder and coherently regularizes and generalizes result consistency and transition consistency on both training and unobserved translations with tailor-designed constraints. Extensive experiments on four different I2I tasks performed on five different datasets demonstrate the efficacy of our proposed UTSGAN in performing consistent translations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助JoeyJin采纳,获得10
1秒前
林小鹿发布了新的文献求助200
2秒前
繁星完成签到 ,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
13秒前
量子星尘发布了新的文献求助10
22秒前
28秒前
夏侯德东完成签到,获得积分10
34秒前
38秒前
彭于晏应助橙汁儿采纳,获得10
39秒前
Aliothae发布了新的文献求助10
40秒前
商毛毛发布了新的文献求助10
43秒前
橙汁儿完成签到,获得积分10
46秒前
邓佳鑫Alan应助Aliothae采纳,获得10
49秒前
Aliothae完成签到,获得积分10
1分钟前
看不了一点文献应助夏宇采纳,获得20
1分钟前
无花果应助美满惜寒采纳,获得10
1分钟前
邢晓彤完成签到 ,获得积分10
1分钟前
整齐的飞兰完成签到 ,获得积分10
1分钟前
1分钟前
美满惜寒发布了新的文献求助10
1分钟前
1分钟前
研友_VZG7GZ应助VvV采纳,获得10
1分钟前
大模型应助美满惜寒采纳,获得10
1分钟前
solar发布了新的文献求助10
1分钟前
1分钟前
儒雅的十八完成签到,获得积分10
1分钟前
雪白元风完成签到 ,获得积分10
1分钟前
LHH完成签到 ,获得积分10
1分钟前
2分钟前
仁爱裘完成签到,获得积分10
2分钟前
美满惜寒发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
2分钟前
科研兵发布了新的文献求助20
2分钟前
2分钟前
2分钟前
solar完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413114
求助须知:如何正确求助?哪些是违规求助? 4530302
关于积分的说明 14122810
捐赠科研通 4445237
什么是DOI,文献DOI怎么找? 2439152
邀请新用户注册赠送积分活动 1431216
关于科研通互助平台的介绍 1408591