生物信息学
计算生物学
决策树
机器学习
梯度升压
生物标志物发现
生物信息学
诊断生物标志物
人工智能
生物标志物
计算机科学
生物
随机森林
蛋白质组学
基因
遗传学
作者
Hui Hu,Jie Cai,Daoxi Qi,Boyu Li,Yu Li,Chen Wang,Akhilesh Kumar Bajpai,Xiaoqin Huang,Xiaokang Zhang,Lu Lu,Jinping Liu,Fang Zheng
摘要
A number of processes and pathways have been reported in the development of Group I pulmonary hypertension (Group I PAH); however, novel biomarkers need to be identified for a better diagnosis and management. We employed a robust rank aggregation (RRA) algorithm to shortlist the key differentially expressed genes (DEGs) between Group I PAH patients and controls. An optimal diagnostic model was obtained by comparing seven machine learning algorithms and was verified in an independent dataset. The functional roles of key DEGs and biomarkers were analyzed using various in silico methods. Finally, the biomarkers and a set of key candidates were experimentally validated using patient samples and a cell line model. A total of 48 key DEGs with preferable diagnostic value were identified. A gradient boosting decision tree algorithm was utilized to build a diagnostic model with three biomarkers, PBRM1, CA1, and TXLNG. An immune-cell infiltration analysis revealed significant differences in the relative abundances of seven immune cells between controls and PAH patients and a correlation with the biomarkers. Experimental validation confirmed the upregulation of the three biomarkers in Group I PAH patients. In conclusion, machine learning and a bioinformatics analysis along with experimental techniques identified PBRM1, CA1, and TXLNG as potential biomarkers for Group I PAH.
科研通智能强力驱动
Strongly Powered by AbleSci AI