Identification of Potential Biomarkers for Group I Pulmonary Hypertension Based on Machine Learning and Bioinformatics Analysis

生物信息学 计算生物学 决策树 机器学习 梯度升压 生物标志物发现 生物信息学 诊断生物标志物 人工智能 生物标志物 计算机科学 生物 随机森林 蛋白质组学 基因 遗传学
作者
Hui Hu,Jie Cai,Daoxi Qi,Boyu Li,Yu Li,Chen Wang,Akhilesh Kumar Bajpai,Xiaoqin Huang,Xiaokang Zhang,Lu Lu,Jinping Liu,Fang Zheng
出处
期刊:International Journal of Molecular Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:24 (9): 8050-8050
标识
DOI:10.3390/ijms24098050
摘要

A number of processes and pathways have been reported in the development of Group I pulmonary hypertension (Group I PAH); however, novel biomarkers need to be identified for a better diagnosis and management. We employed a robust rank aggregation (RRA) algorithm to shortlist the key differentially expressed genes (DEGs) between Group I PAH patients and controls. An optimal diagnostic model was obtained by comparing seven machine learning algorithms and was verified in an independent dataset. The functional roles of key DEGs and biomarkers were analyzed using various in silico methods. Finally, the biomarkers and a set of key candidates were experimentally validated using patient samples and a cell line model. A total of 48 key DEGs with preferable diagnostic value were identified. A gradient boosting decision tree algorithm was utilized to build a diagnostic model with three biomarkers, PBRM1, CA1, and TXLNG. An immune-cell infiltration analysis revealed significant differences in the relative abundances of seven immune cells between controls and PAH patients and a correlation with the biomarkers. Experimental validation confirmed the upregulation of the three biomarkers in Group I PAH patients. In conclusion, machine learning and a bioinformatics analysis along with experimental techniques identified PBRM1, CA1, and TXLNG as potential biomarkers for Group I PAH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈宇完成签到,获得积分10
1秒前
chen完成签到 ,获得积分10
1秒前
3秒前
科研通AI5应助洛苏采纳,获得10
4秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
Jiangzhibing发布了新的文献求助10
8秒前
zhujingyao完成签到,获得积分10
9秒前
9秒前
浮游应助生椰拿铁死忠粉采纳,获得10
9秒前
10秒前
12秒前
12秒前
13秒前
13秒前
TTT完成签到,获得积分10
13秒前
彭于晏应助零点黄昏采纳,获得10
14秒前
wjx发布了新的文献求助10
15秒前
Guo完成签到,获得积分10
16秒前
清爽难敌发布了新的文献求助10
17秒前
17秒前
科目三应助TCMning采纳,获得10
18秒前
量子星尘发布了新的文献求助150
18秒前
18秒前
18秒前
19秒前
19秒前
科研通AI6应助陈宏伟采纳,获得10
20秒前
小二郎应助dzh采纳,获得10
21秒前
lulu8809完成签到,获得积分10
24秒前
香蕉觅云应助xing采纳,获得10
24秒前
星辰大海应助达八八八采纳,获得10
24秒前
大意的绿蓉完成签到,获得积分10
25秒前
xuyun发布了新的文献求助10
25秒前
木木夕云发布了新的文献求助10
25秒前
26秒前
明月清风发布了新的文献求助30
26秒前
标致冰海完成签到 ,获得积分10
27秒前
yj应助星星采纳,获得10
28秒前
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125754
求助须知:如何正确求助?哪些是违规求助? 4329444
关于积分的说明 13491137
捐赠科研通 4164408
什么是DOI,文献DOI怎么找? 2282909
邀请新用户注册赠送积分活动 1283936
关于科研通互助平台的介绍 1223344