Identification of Potential Biomarkers for Group I Pulmonary Hypertension Based on Machine Learning and Bioinformatics Analysis

生物信息学 计算生物学 决策树 机器学习 梯度升压 生物标志物发现 生物信息学 诊断生物标志物 人工智能 生物标志物 计算机科学 生物 随机森林 蛋白质组学 基因 遗传学
作者
Hui Hu,Jie Cai,Daoxi Qi,Boyu Li,Yu Li,Chen Wang,Akhilesh Kumar Bajpai,Xiaoqin Huang,Xiaokang Zhang,Lu Lu,Jinping Liu,Fang Zheng
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:24 (9): 8050-8050
标识
DOI:10.3390/ijms24098050
摘要

A number of processes and pathways have been reported in the development of Group I pulmonary hypertension (Group I PAH); however, novel biomarkers need to be identified for a better diagnosis and management. We employed a robust rank aggregation (RRA) algorithm to shortlist the key differentially expressed genes (DEGs) between Group I PAH patients and controls. An optimal diagnostic model was obtained by comparing seven machine learning algorithms and was verified in an independent dataset. The functional roles of key DEGs and biomarkers were analyzed using various in silico methods. Finally, the biomarkers and a set of key candidates were experimentally validated using patient samples and a cell line model. A total of 48 key DEGs with preferable diagnostic value were identified. A gradient boosting decision tree algorithm was utilized to build a diagnostic model with three biomarkers, PBRM1, CA1, and TXLNG. An immune-cell infiltration analysis revealed significant differences in the relative abundances of seven immune cells between controls and PAH patients and a correlation with the biomarkers. Experimental validation confirmed the upregulation of the three biomarkers in Group I PAH patients. In conclusion, machine learning and a bioinformatics analysis along with experimental techniques identified PBRM1, CA1, and TXLNG as potential biomarkers for Group I PAH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhenhong完成签到,获得积分10
2秒前
FashionBoy应助求助123采纳,获得30
3秒前
坚定白筠完成签到 ,获得积分10
4秒前
星辰大海应助Serein采纳,获得10
5秒前
朴实香露发布了新的文献求助10
5秒前
9秒前
sunnyexon完成签到 ,获得积分10
11秒前
13秒前
许可发布了新的文献求助10
13秒前
尹文完成签到,获得积分20
13秒前
聚砂成塔完成签到,获得积分10
14秒前
搜集达人应助江上清风游采纳,获得10
14秒前
15秒前
阿红完成签到,获得积分10
15秒前
19秒前
唠叨的中道完成签到,获得积分10
19秒前
陈豆豆完成签到 ,获得积分10
20秒前
LIU发布了新的文献求助10
20秒前
FashionBoy应助希勤采纳,获得10
21秒前
wxywxy发布了新的文献求助10
22秒前
健忘的谷冬完成签到 ,获得积分20
23秒前
dan应助巴拉巴拉采纳,获得10
24秒前
24秒前
25秒前
25秒前
许可完成签到,获得积分20
25秒前
chen完成签到,获得积分10
25秒前
宋志远完成签到,获得积分10
27秒前
28秒前
28秒前
NexusExplorer应助wxywxy采纳,获得30
28秒前
肉肉完成签到 ,获得积分10
29秒前
qq.com发布了新的文献求助10
30秒前
马森完成签到,获得积分10
31秒前
怕黑的立轩完成签到,获得积分10
32秒前
科研通AI2S应助研友_Z119gZ采纳,获得10
32秒前
可可西里完成签到 ,获得积分10
32秒前
33秒前
希望天下0贩的0应助ktk采纳,获得10
33秒前
strong.quite完成签到,获得积分10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023