Identification of Potential Biomarkers for Group I Pulmonary Hypertension Based on Machine Learning and Bioinformatics Analysis

生物信息学 计算生物学 决策树 机器学习 梯度升压 生物标志物发现 生物信息学 诊断生物标志物 人工智能 生物标志物 计算机科学 生物 随机森林 蛋白质组学 基因 遗传学
作者
Hui Hu,Jie Cai,Daoxi Qi,Boyu Li,Yu Li,Chen Wang,Akhilesh Kumar Bajpai,Xiaoqin Huang,Xiaokang Zhang,Lu Lu,Jinping Liu,Fang Zheng
出处
期刊:International Journal of Molecular Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:24 (9): 8050-8050
标识
DOI:10.3390/ijms24098050
摘要

A number of processes and pathways have been reported in the development of Group I pulmonary hypertension (Group I PAH); however, novel biomarkers need to be identified for a better diagnosis and management. We employed a robust rank aggregation (RRA) algorithm to shortlist the key differentially expressed genes (DEGs) between Group I PAH patients and controls. An optimal diagnostic model was obtained by comparing seven machine learning algorithms and was verified in an independent dataset. The functional roles of key DEGs and biomarkers were analyzed using various in silico methods. Finally, the biomarkers and a set of key candidates were experimentally validated using patient samples and a cell line model. A total of 48 key DEGs with preferable diagnostic value were identified. A gradient boosting decision tree algorithm was utilized to build a diagnostic model with three biomarkers, PBRM1, CA1, and TXLNG. An immune-cell infiltration analysis revealed significant differences in the relative abundances of seven immune cells between controls and PAH patients and a correlation with the biomarkers. Experimental validation confirmed the upregulation of the three biomarkers in Group I PAH patients. In conclusion, machine learning and a bioinformatics analysis along with experimental techniques identified PBRM1, CA1, and TXLNG as potential biomarkers for Group I PAH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助怡然幻然采纳,获得10
1秒前
务实源智发布了新的文献求助30
2秒前
2秒前
izzhan完成签到,获得积分10
2秒前
4秒前
5秒前
7秒前
8秒前
icel完成签到,获得积分10
8秒前
9秒前
务实的听筠完成签到,获得积分20
10秒前
cocolu给cocolu的求助进行了留言
11秒前
丘比特应助平常的路人采纳,获得10
11秒前
12秒前
ZZ发布了新的文献求助10
12秒前
14秒前
木瓜发布了新的文献求助10
14秒前
满眼星辰发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
18秒前
万能图书馆应助木瓜采纳,获得10
20秒前
123发布了新的文献求助10
20秒前
20秒前
21秒前
25秒前
充电宝应助123采纳,获得10
27秒前
27秒前
27秒前
yiyi发布了新的文献求助30
29秒前
丰那个丰发布了新的文献求助10
30秒前
30秒前
31秒前
1111完成签到,获得积分10
32秒前
积极香菜完成签到,获得积分10
32秒前
32秒前
小宋同学应助ZZZ采纳,获得10
33秒前
小子一阿一完成签到,获得积分10
34秒前
shelly发布了新的文献求助10
35秒前
玖Nine发布了新的文献求助10
35秒前
sdjcni完成签到,获得积分10
37秒前
38秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167