Development of machine learning-based models to predict 10-year risk of cardiovascular disease: a prospective cohort study

医学 接收机工作特性 弗雷明翰风险评分 心肌梗塞 队列 血压 内科学 布里氏评分 生命银行 疾病 物理疗法 机器学习 计算机科学 生物信息学 生物
作者
Jia You,Canqing Yu,Jujiao Kang,Hui-Fu Wang,Ming Yang,Jianfeng Feng,Jin-Tai Yu,Wei Cheng
出处
期刊:Stroke and vascular neurology [BMJ]
卷期号:8 (6): 475-485 被引量:24
标识
DOI:10.1136/svn-2023-002332
摘要

Background Previous prediction algorithms for cardiovascular diseases (CVD) were established using risk factors retrieved largely based on empirical clinical knowledge. This study sought to identify predictors among a comprehensive variable space, and then employ machine learning (ML) algorithms to develop a novel CVD risk prediction model. Methods From a longitudinal population-based cohort of UK Biobank, this study included 473 611 CVD-free participants aged between 37 and 73 years old. We implemented an ML-based data-driven pipeline to identify predictors from 645 candidate variables covering a comprehensive range of health-related factors and assessed multiple ML classifiers to establish a risk prediction model on 10-year incident CVD. The model was validated through a leave-one-center-out cross-validation. Results During a median follow-up of 12.2 years, 31 466 participants developed CVD within 10 years after baseline visits. A novel UK Biobank CVD risk prediction (UKCRP) model was established that comprised 10 predictors including age, sex, medication of cholesterol and blood pressure, cholesterol ratio (total/high-density lipoprotein), systolic blood pressure, previous angina or heart disease, number of medications taken, cystatin C, chest pain and pack-years of smoking. Our model obtained satisfied discriminative performance with an area under the receiver operating characteristic curve (AUC) of 0.762±0.010 that outperformed multiple existing clinical models, and it was well-calibrated with a Brier Score of 0.057±0.006. Further, the UKCRP can obtain comparable performance for myocardial infarction (AUC 0.774±0.011) and ischaemic stroke (AUC 0.730±0.020), but inferior performance for haemorrhagic stroke (AUC 0.644±0.026). Conclusion ML-based classification models can learn expressive representations from potential high-risked CVD participants who may benefit from earlier clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hina完成签到,获得积分10
刚刚
1秒前
3秒前
Fairy完成签到,获得积分10
4秒前
林林林发布了新的文献求助10
5秒前
lihang完成签到 ,获得积分10
5秒前
6秒前
james完成签到,获得积分10
8秒前
hh发布了新的文献求助10
9秒前
墨翎发布了新的文献求助30
9秒前
垃圾二硫自组装纳米粒完成签到,获得积分10
9秒前
SciGPT应助TT采纳,获得10
11秒前
科目三应助罖亽采纳,获得10
11秒前
今后应助devil采纳,获得10
12秒前
IP41320完成签到,获得积分20
12秒前
hh完成签到,获得积分10
13秒前
AI完成签到 ,获得积分10
14秒前
15秒前
微风轻起发布了新的文献求助10
16秒前
16秒前
zsyzxb发布了新的文献求助10
17秒前
老鱼吹浪完成签到 ,获得积分10
17秒前
21秒前
22秒前
复杂煎饼完成签到,获得积分10
23秒前
23秒前
科研通AI5应助忆韵采纳,获得10
24秒前
罖亽发布了新的文献求助10
25秒前
orixero应助三顿饭吃一天采纳,获得10
27秒前
28秒前
临在完成签到,获得积分10
28秒前
28秒前
wu关闭了wu文献求助
29秒前
youyuguang完成签到,获得积分10
29秒前
30秒前
由哎完成签到,获得积分10
30秒前
小庄应助复杂煎饼采纳,获得10
31秒前
科研通AI5应助科研小白菜采纳,获得10
32秒前
迷路以筠发布了新的文献求助10
32秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849