Development of machine learning-based models to predict 10-year risk of cardiovascular disease: a prospective cohort study

医学 接收机工作特性 弗雷明翰风险评分 心肌梗塞 队列 血压 内科学 布里氏评分 生命银行 疾病 物理疗法 机器学习 计算机科学 生物信息学 生物
作者
Jia You,Canqing Yu,Jujiao Kang,Hui-Fu Wang,Ming Yang,Jianfeng Feng,Jin-Tai Yu,Wei Cheng
出处
期刊:Stroke and vascular neurology [BMJ]
卷期号:8 (6): 475-485 被引量:25
标识
DOI:10.1136/svn-2023-002332
摘要

Background Previous prediction algorithms for cardiovascular diseases (CVD) were established using risk factors retrieved largely based on empirical clinical knowledge. This study sought to identify predictors among a comprehensive variable space, and then employ machine learning (ML) algorithms to develop a novel CVD risk prediction model. Methods From a longitudinal population-based cohort of UK Biobank, this study included 473 611 CVD-free participants aged between 37 and 73 years old. We implemented an ML-based data-driven pipeline to identify predictors from 645 candidate variables covering a comprehensive range of health-related factors and assessed multiple ML classifiers to establish a risk prediction model on 10-year incident CVD. The model was validated through a leave-one-center-out cross-validation. Results During a median follow-up of 12.2 years, 31 466 participants developed CVD within 10 years after baseline visits. A novel UK Biobank CVD risk prediction (UKCRP) model was established that comprised 10 predictors including age, sex, medication of cholesterol and blood pressure, cholesterol ratio (total/high-density lipoprotein), systolic blood pressure, previous angina or heart disease, number of medications taken, cystatin C, chest pain and pack-years of smoking. Our model obtained satisfied discriminative performance with an area under the receiver operating characteristic curve (AUC) of 0.762±0.010 that outperformed multiple existing clinical models, and it was well-calibrated with a Brier Score of 0.057±0.006. Further, the UKCRP can obtain comparable performance for myocardial infarction (AUC 0.774±0.011) and ischaemic stroke (AUC 0.730±0.020), but inferior performance for haemorrhagic stroke (AUC 0.644±0.026). Conclusion ML-based classification models can learn expressive representations from potential high-risked CVD participants who may benefit from earlier clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
天佑小涛发布了新的文献求助10
1秒前
酷波er应助Nolan采纳,获得10
1秒前
2秒前
1zzz完成签到,获得积分10
2秒前
3秒前
Tuesma发布了新的文献求助10
3秒前
shanjianjie完成签到,获得积分20
3秒前
3秒前
ZWT发布了新的文献求助10
4秒前
ding应助乐生采纳,获得10
4秒前
6秒前
GUIGUI发布了新的文献求助10
6秒前
牧心24发布了新的文献求助20
7秒前
orixero应助布丁采纳,获得10
7秒前
伯赏浩天发布了新的文献求助10
7秒前
zwhy发布了新的文献求助10
8秒前
8秒前
xcky0917发布了新的文献求助10
9秒前
任性踏歌发布了新的文献求助30
9秒前
9秒前
带虾的烧麦完成签到,获得积分10
9秒前
Layace发布了新的文献求助10
9秒前
10秒前
月神满月完成签到,获得积分10
10秒前
10秒前
Tuesma完成签到,获得积分10
12秒前
天佑小涛完成签到,获得积分10
13秒前
Wsyyy发布了新的文献求助10
13秒前
万能图书馆应助GUIGUI采纳,获得10
14秒前
fighting发布了新的文献求助10
14秒前
Hello应助Vera采纳,获得10
15秒前
accept发布了新的文献求助10
16秒前
刘陶发布了新的文献求助10
16秒前
董宏杨发布了新的文献求助10
16秒前
16秒前
哦啦啦发布了新的文献求助10
17秒前
xcky0917完成签到,获得积分10
18秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952331
求助须知:如何正确求助?哪些是违规求助? 3497729
关于积分的说明 11088592
捐赠科研通 3228329
什么是DOI,文献DOI怎么找? 1784774
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303