Development of machine learning-based models to predict 10-year risk of cardiovascular disease: a prospective cohort study

医学 接收机工作特性 弗雷明翰风险评分 心肌梗塞 队列 血压 内科学 布里氏评分 生命银行 疾病 物理疗法 机器学习 计算机科学 生物信息学 生物
作者
Jia You,Canqing Yu,Jujiao Kang,Hui-Fu Wang,Ming Yang,Jianfeng Feng,Jin-Tai Yu,Wei Cheng
出处
期刊:Stroke and vascular neurology [BMJ]
卷期号:8 (6): 475-485 被引量:21
标识
DOI:10.1136/svn-2023-002332
摘要

Background Previous prediction algorithms for cardiovascular diseases (CVD) were established using risk factors retrieved largely based on empirical clinical knowledge. This study sought to identify predictors among a comprehensive variable space, and then employ machine learning (ML) algorithms to develop a novel CVD risk prediction model. Methods From a longitudinal population-based cohort of UK Biobank, this study included 473 611 CVD-free participants aged between 37 and 73 years old. We implemented an ML-based data-driven pipeline to identify predictors from 645 candidate variables covering a comprehensive range of health-related factors and assessed multiple ML classifiers to establish a risk prediction model on 10-year incident CVD. The model was validated through a leave-one-center-out cross-validation. Results During a median follow-up of 12.2 years, 31 466 participants developed CVD within 10 years after baseline visits. A novel UK Biobank CVD risk prediction (UKCRP) model was established that comprised 10 predictors including age, sex, medication of cholesterol and blood pressure, cholesterol ratio (total/high-density lipoprotein), systolic blood pressure, previous angina or heart disease, number of medications taken, cystatin C, chest pain and pack-years of smoking. Our model obtained satisfied discriminative performance with an area under the receiver operating characteristic curve (AUC) of 0.762±0.010 that outperformed multiple existing clinical models, and it was well-calibrated with a Brier Score of 0.057±0.006. Further, the UKCRP can obtain comparable performance for myocardial infarction (AUC 0.774±0.011) and ischaemic stroke (AUC 0.730±0.020), but inferior performance for haemorrhagic stroke (AUC 0.644±0.026). Conclusion ML-based classification models can learn expressive representations from potential high-risked CVD participants who may benefit from earlier clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流川枫完成签到,获得积分20
刚刚
单薄怜寒完成签到 ,获得积分10
刚刚
Lucas应助净土采纳,获得10
2秒前
2秒前
曾经不言发布了新的文献求助10
3秒前
打打应助最牛的kangkang采纳,获得10
4秒前
杜康完成签到,获得积分10
6秒前
tianzhanggong发布了新的文献求助30
6秒前
小厂科研民工完成签到 ,获得积分10
6秒前
7秒前
8秒前
Fighter完成签到,获得积分10
8秒前
10秒前
10秒前
慕课魔芋发布了新的文献求助10
11秒前
小二郎应助Fighter采纳,获得10
12秒前
祁依欧欧完成签到,获得积分10
13秒前
乔治发布了新的文献求助10
14秒前
16秒前
梨炒栗子完成签到 ,获得积分10
16秒前
17秒前
应万言完成签到,获得积分0
17秒前
JamesPei应助geyuyang采纳,获得10
17秒前
18秒前
凯德尼完成签到,获得积分10
21秒前
tianzhanggong完成签到,获得积分10
22秒前
萧水白发布了新的文献求助100
22秒前
Jasper应助乔治采纳,获得10
23秒前
23秒前
23秒前
Micale完成签到,获得积分10
23秒前
无奈枕头发布了新的文献求助10
24秒前
24秒前
薛洁洁完成签到 ,获得积分10
24秒前
25秒前
逆旅发布了新的文献求助30
25秒前
凯德尼发布了新的文献求助10
26秒前
小羊完成签到,获得积分10
27秒前
Polymer72发布了新的文献求助30
27秒前
geyuyang发布了新的文献求助10
27秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330136
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596794
捐赠科研通 2638173
什么是DOI,文献DOI怎么找? 1444189
科研通“疑难数据库(出版商)”最低求助积分说明 669017
邀请新用户注册赠送积分活动 656589