Antiviral Flavonoids: A Natural Scaffold with Prospects as Phytomedicines against SARS-CoV2

蛋白酵素 蛋白酶 抗菌剂 数量结构-活动关系 计算生物学 抗病毒药物 生物 病毒学 病毒 微生物学 生物化学 生物信息学
作者
Chiranjeet Saha,R Naskar,Sandipan Chakraborty
出处
期刊:Mini-reviews in Medicinal Chemistry [Bentham Science]
卷期号:24 (1): 39-59 被引量:2
标识
DOI:10.2174/1389557523666230503105053
摘要

Flavonoids are vital candidates to fight against a wide range of pathogenic microbial infections. Due to their therapeutic potential, many flavonoids from the herbs of traditional medicine systems are now being evaluated as lead compounds to develop potential antimicrobial hits. The emergence of SARS-CoV-2 caused one of the deadliest pandemics that has ever been known to mankind. To date, more than 600 million confirmed cases of SARS-CoV2 infection have been reported worldwide. Situations are worse due to the unavailability of therapeutics to combat the viral disease. Thus, there is an urgent need to develop drugs against SARS-CoV2 and its emerging variants. Here, we have carried out a detailed mechanistic analysis of the antiviral efficacy of flavonoids in terms of their potential targets and structural feature required for exerting their antiviral activity. A catalog of various promising flavonoid compounds has been shown to elicit inhibitory effects against SARS-CoV and MERS-CoV proteases. However, they act in the high-micromolar regime. Thus a proper leadoptimization against the various proteases of SARS-CoV2 can lead to high-affinity SARS-CoV2 protease inhibitors. To enable lead optimization, a quantitative structure-activity relationship (QSAR) analysis has been developed for the flavonoids that have shown antiviral activity against viral proteases of SARS-CoV and MERS-CoV. High sequence similarities between coronavirus proteases enable the applicability of the developed QSAR to SARS-CoV2 proteases inhibitor screening. The detailed mechanistic analysis of the antiviral flavonoids and the developed QSAR models is a step forward toward the development of flavonoid-based therapeutics or supplements to fight against COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助平淡夏云采纳,获得10
刚刚
1秒前
芳华如梦完成签到,获得积分10
1秒前
2秒前
2秒前
顺利梦菡发布了新的文献求助10
3秒前
3秒前
raquelle发布了新的文献求助10
3秒前
volca完成签到,获得积分10
3秒前
5秒前
base发布了新的文献求助20
5秒前
曾曾完成签到,获得积分10
5秒前
香蕉觅云应助杪123采纳,获得10
6秒前
david发布了新的文献求助10
7秒前
苏打完成签到 ,获得积分10
7秒前
思源应助jin采纳,获得10
8秒前
耍酷水卉关注了科研通微信公众号
8秒前
8秒前
xxxzby完成签到,获得积分10
9秒前
9秒前
研友_VZGvVn发布了新的文献求助10
10秒前
宁紫涵发布了新的文献求助10
10秒前
10秒前
GuMingyang发布了新的文献求助30
13秒前
谢昱完成签到,获得积分10
13秒前
萧水白应助加力采纳,获得10
13秒前
majia发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
研友_VZGvVn完成签到,获得积分10
18秒前
多多发布了新的文献求助10
20秒前
小马甲应助雨晴轻采纳,获得10
21秒前
21秒前
杪123发布了新的文献求助10
21秒前
22秒前
调研昵称发布了新的文献求助10
22秒前
聪明的海白关注了科研通微信公众号
22秒前
23秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129146
求助须知:如何正确求助?哪些是违规求助? 2779966
关于积分的说明 7745595
捐赠科研通 2435160
什么是DOI,文献DOI怎么找? 1293933
科研通“疑难数据库(出版商)”最低求助积分说明 623474
版权声明 600542