亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

NeuroGrasp: Real-Time EEG Classification of High-Level Motor Imagery Tasks Using a Dual-Stage Deep Learning Framework

脑-机接口 运动表象 脑电图 计算机科学 抓住 人工智能 解码方法 推论 深度学习 模式识别(心理学) 机器学习 语音识别 心理学 神经科学 电信 程序设计语言
作者
Jeong-Hyun Cho,Ji-Hoon Jeong,Seong–Whan Lee
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (12): 13279-13292 被引量:21
标识
DOI:10.1109/tcyb.2021.3122969
摘要

Brain-computer interfaces (BCIs) have been widely employed to identify and estimate a user's intention to trigger a robotic device by decoding motor imagery (MI) from an electroencephalogram (EEG). However, developing a BCI system driven by MI related to natural hand-grasp tasks is challenging due to its high complexity. Although numerous BCI studies have successfully decoded large body parts, such as the movement intention of both hands, arms, or legs, research on MI decoding of high-level behaviors such as hand grasping is essential to further expand the versatility of MI-based BCIs. In this study, we propose NeuroGrasp, a dual-stage deep learning framework that decodes multiple hand grasping from EEG signals under the MI paradigm. The proposed method effectively uses an EEG and electromyography (EMG)-based learning, such that EEG-based inference at test phase becomes possible. The EMG guidance during model training allows BCIs to predict hand grasp types from EEG signals accurately. Consequently, NeuroGrasp improved classification performance offline, and demonstrated a stable classification performance online. Across 12 subjects, we obtained an average offline classification accuracy of 0.68 (±0.09) in four-grasp-type classifications and 0.86 (±0.04) in two-grasp category classifications. In addition, we obtained an average online classification accuracy of 0.65 (±0.09) and 0.79 (±0.09) across six high-performance subjects. Because the proposed method has demonstrated a stable classification performance when evaluated either online or offline, in the future, we expect that the proposed method could contribute to different BCI applications, including robotic hands or neuroprosthetics for handling everyday objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Elvira发布了新的文献求助10
8秒前
17秒前
冷酷跳跳糖发布了新的文献求助100
18秒前
huan发布了新的文献求助10
22秒前
Akim应助科研通管家采纳,获得10
24秒前
huan完成签到,获得积分10
29秒前
冷酷跳跳糖完成签到,获得积分10
31秒前
37秒前
顾矜应助十有五采纳,获得10
1分钟前
1分钟前
Sandy完成签到,获得积分0
1分钟前
碧蓝溪流发布了新的文献求助10
1分钟前
1分钟前
五十一完成签到 ,获得积分10
1分钟前
W1996发布了新的文献求助10
1分钟前
优美的谷完成签到,获得积分10
1分钟前
星辰大海应助婷子采纳,获得10
1分钟前
依灵完成签到,获得积分10
1分钟前
今后应助HMBB采纳,获得20
1分钟前
小丸子完成签到 ,获得积分10
1分钟前
1分钟前
W1996完成签到,获得积分10
1分钟前
婷子发布了新的文献求助10
1分钟前
1分钟前
linkin完成签到 ,获得积分10
1分钟前
HMBB发布了新的文献求助20
1分钟前
2分钟前
2分钟前
灰色白面鸮完成签到,获得积分10
2分钟前
HMBB完成签到,获得积分10
2分钟前
HoraDorathy发布了新的文献求助10
2分钟前
CipherSage应助HoraDorathy采纳,获得10
2分钟前
新新新新新发顶刊完成签到 ,获得积分10
2分钟前
2分钟前
十有五发布了新的文献求助10
3分钟前
背完单词好睡觉完成签到 ,获得积分10
3分钟前
开霁完成签到 ,获得积分10
3分钟前
柏小霜完成签到 ,获得积分0
3分钟前
llxiaomianyang完成签到,获得积分10
3分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963168
求助须知:如何正确求助?哪些是违规求助? 3509051
关于积分的说明 11145009
捐赠科研通 3242106
什么是DOI,文献DOI怎么找? 1791744
邀请新用户注册赠送积分活动 873127
科研通“疑难数据库(出版商)”最低求助积分说明 803622