已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Graph Convolutional Adversarial Networks for Spatiotemporal Anomaly Detection

鉴别器 异常检测 计算机科学 发电机(电路理论) 杠杆(统计) 数据挖掘 图形 人工智能 对抗制 探测器 实时计算 机器学习 理论计算机科学 物理 功率(物理) 电信 量子力学
作者
Leyan Deng,Defu Lian,Zhenya Huang,Enhong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2416-2428 被引量:65
标识
DOI:10.1109/tnnls.2021.3136171
摘要

Traffic anomalies, such as traffic accidents and unexpected crowd gathering, may endanger public safety if not handled timely. Detecting traffic anomalies in their early stage can benefit citizens' quality of life and city planning. However, traffic anomaly detection faces two main challenges. First, it is challenging to model traffic dynamics due to the complex spatiotemporal characteristics of traffic data. Second, the criteria of traffic anomalies may vary with locations and times. In this article, we propose a spatiotemporal graph convolutional adversarial network (STGAN) to address these above challenges. More specifically, we devise a spatiotemporal generator to predict the normal traffic dynamics and a spatiotemporal discriminator to determine whether an input sequence is real or not. There are high correlations between neighboring data points in the spatial and temporal dimensions. Therefore, we propose a recent module and leverage graph convolutional gated recurrent unit (GCGRU) to help the generator and discriminator learn the spatiotemporal features of traffic dynamics and traffic anomalies, respectively. After adversarial training, the generator and discriminator can be used as detectors independently, where the generator models the normal traffic dynamics patterns and the discriminator provides detection criteria varying with spatiotemporal features. We then design a novel anomaly score combining the abilities of two detectors, which considers the misleading of unpredictable traffic dynamics to the discriminator. We evaluate our method on two real-world datasets from New York City and California. The experimental results show that the proposed method detects various traffic anomalies effectively and outperforms the state-of-the-art methods. Furthermore, the devised anomaly score achieves more robust detection performances than the general score.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
messi0731发布了新的文献求助10
刚刚
刚刚
3秒前
目光所致完成签到,获得积分10
5秒前
彼得发布了新的文献求助10
6秒前
32发布了新的文献求助10
7秒前
7秒前
师忆夏完成签到,获得积分10
9秒前
雪阳发布了新的文献求助20
10秒前
10秒前
英勇的沉鱼完成签到 ,获得积分10
10秒前
顾矜应助messi0731采纳,获得30
10秒前
久顾南川完成签到 ,获得积分10
10秒前
gyyy完成签到 ,获得积分10
12秒前
冰棒比冰冰完成签到 ,获得积分10
12秒前
kkr完成签到,获得积分20
13秒前
13秒前
周敏杰完成签到,获得积分10
13秒前
KK完成签到,获得积分10
17秒前
共享精神应助刘萌清采纳,获得10
17秒前
挑片岛屿发布了新的文献求助10
18秒前
19秒前
上官若男应助神医magical采纳,获得10
20秒前
Tuniverse_完成签到 ,获得积分10
24秒前
想毕业的笑笑完成签到,获得积分20
25秒前
25秒前
彭于晏应助默默的采纳,获得10
26秒前
研友_ngX12Z发布了新的文献求助10
26秒前
27秒前
充电宝应助福多多采纳,获得10
27秒前
量子星尘发布了新的文献求助10
30秒前
Akebi完成签到,获得积分10
31秒前
31秒前
大大怪完成签到,获得积分20
31秒前
海荷完成签到,获得积分10
31秒前
贾克斯发布了新的文献求助10
32秒前
32秒前
科研白完成签到 ,获得积分10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627458
求助须知:如何正确求助?哪些是违规求助? 4713928
关于积分的说明 14962390
捐赠科研通 4784838
什么是DOI,文献DOI怎么找? 2554884
邀请新用户注册赠送积分活动 1516380
关于科研通互助平台的介绍 1476702