亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph Convolutional Adversarial Networks for Spatiotemporal Anomaly Detection

鉴别器 异常检测 计算机科学 发电机(电路理论) 杠杆(统计) 数据挖掘 图形 人工智能 对抗制 探测器 实时计算 机器学习 理论计算机科学 物理 功率(物理) 电信 量子力学
作者
Leyan Deng,Defu Lian,Zhenya Huang,Enhong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2416-2428 被引量:65
标识
DOI:10.1109/tnnls.2021.3136171
摘要

Traffic anomalies, such as traffic accidents and unexpected crowd gathering, may endanger public safety if not handled timely. Detecting traffic anomalies in their early stage can benefit citizens' quality of life and city planning. However, traffic anomaly detection faces two main challenges. First, it is challenging to model traffic dynamics due to the complex spatiotemporal characteristics of traffic data. Second, the criteria of traffic anomalies may vary with locations and times. In this article, we propose a spatiotemporal graph convolutional adversarial network (STGAN) to address these above challenges. More specifically, we devise a spatiotemporal generator to predict the normal traffic dynamics and a spatiotemporal discriminator to determine whether an input sequence is real or not. There are high correlations between neighboring data points in the spatial and temporal dimensions. Therefore, we propose a recent module and leverage graph convolutional gated recurrent unit (GCGRU) to help the generator and discriminator learn the spatiotemporal features of traffic dynamics and traffic anomalies, respectively. After adversarial training, the generator and discriminator can be used as detectors independently, where the generator models the normal traffic dynamics patterns and the discriminator provides detection criteria varying with spatiotemporal features. We then design a novel anomaly score combining the abilities of two detectors, which considers the misleading of unpredictable traffic dynamics to the discriminator. We evaluate our method on two real-world datasets from New York City and California. The experimental results show that the proposed method detects various traffic anomalies effectively and outperforms the state-of-the-art methods. Furthermore, the devised anomaly score achieves more robust detection performances than the general score.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助Yashyi采纳,获得10
9秒前
凡千灵溪完成签到 ,获得积分10
10秒前
勤恳的语蝶完成签到 ,获得积分10
22秒前
26秒前
38秒前
39秒前
Yashyi发布了新的文献求助10
43秒前
46秒前
北七完成签到,获得积分10
48秒前
50秒前
1分钟前
呵呵完成签到,获得积分10
1分钟前
温婉的不弱完成签到,获得积分20
1分钟前
1分钟前
fhw完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
完美世界应助儒雅静柏采纳,获得10
1分钟前
炙热书白完成签到,获得积分10
1分钟前
无风风发布了新的文献求助10
1分钟前
炙热书白发布了新的文献求助10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
爱思考的小笨笨完成签到,获得积分10
2分钟前
2分钟前
2分钟前
xiaolang2004发布了新的文献求助10
2分钟前
zzmm发布了新的文献求助10
2分钟前
白华苍松发布了新的文献求助20
2分钟前
FashionBoy应助zzmm采纳,获得10
2分钟前
2分钟前
彭于晏应助白华苍松采纳,获得10
2分钟前
2分钟前
儒雅静柏发布了新的文献求助10
2分钟前
2分钟前
儒雅静柏完成签到,获得积分10
2分钟前
可爱的函函应助儒雅静柏采纳,获得10
2分钟前
Yashyi完成签到,获得积分10
2分钟前
酷酷妙梦完成签到,获得积分10
3分钟前
Noob_saibot完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590513
求助须知:如何正确求助?哪些是违规求助? 4674789
关于积分的说明 14795291
捐赠科研通 4632686
什么是DOI,文献DOI怎么找? 2532806
邀请新用户注册赠送积分活动 1501296
关于科研通互助平台的介绍 1468687