Graph Convolutional Adversarial Networks for Spatiotemporal Anomaly Detection

鉴别器 异常检测 计算机科学 发电机(电路理论) 杠杆(统计) 数据挖掘 图形 人工智能 对抗制 探测器 实时计算 机器学习 理论计算机科学 物理 功率(物理) 电信 量子力学
作者
Leyan Deng,Defu Lian,Zhenya Huang,Enhong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2416-2428 被引量:65
标识
DOI:10.1109/tnnls.2021.3136171
摘要

Traffic anomalies, such as traffic accidents and unexpected crowd gathering, may endanger public safety if not handled timely. Detecting traffic anomalies in their early stage can benefit citizens' quality of life and city planning. However, traffic anomaly detection faces two main challenges. First, it is challenging to model traffic dynamics due to the complex spatiotemporal characteristics of traffic data. Second, the criteria of traffic anomalies may vary with locations and times. In this article, we propose a spatiotemporal graph convolutional adversarial network (STGAN) to address these above challenges. More specifically, we devise a spatiotemporal generator to predict the normal traffic dynamics and a spatiotemporal discriminator to determine whether an input sequence is real or not. There are high correlations between neighboring data points in the spatial and temporal dimensions. Therefore, we propose a recent module and leverage graph convolutional gated recurrent unit (GCGRU) to help the generator and discriminator learn the spatiotemporal features of traffic dynamics and traffic anomalies, respectively. After adversarial training, the generator and discriminator can be used as detectors independently, where the generator models the normal traffic dynamics patterns and the discriminator provides detection criteria varying with spatiotemporal features. We then design a novel anomaly score combining the abilities of two detectors, which considers the misleading of unpredictable traffic dynamics to the discriminator. We evaluate our method on two real-world datasets from New York City and California. The experimental results show that the proposed method detects various traffic anomalies effectively and outperforms the state-of-the-art methods. Furthermore, the devised anomaly score achieves more robust detection performances than the general score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ada发布了新的文献求助10
刚刚
刚刚
深情安青应助yxc采纳,获得10
刚刚
刚刚
会袜子发布了新的文献求助50
刚刚
1秒前
1秒前
木南儿发布了新的文献求助10
1秒前
竹前家庆完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
sss完成签到,获得积分10
4秒前
独自人生发布了新的文献求助10
4秒前
4秒前
Hanayu完成签到 ,获得积分0
4秒前
搜集达人应助tianqiang采纳,获得10
5秒前
大道要熬发布了新的文献求助10
6秒前
鑫鑫发布了新的文献求助10
6秒前
6秒前
大方惜天发布了新的文献求助10
7秒前
Ada完成签到,获得积分10
7秒前
8秒前
原本山川发布了新的文献求助10
8秒前
阿林完成签到,获得积分10
8秒前
星辰大海应助Brave采纳,获得10
8秒前
YY完成签到 ,获得积分10
9秒前
9秒前
852应助赴约采纳,获得10
10秒前
幸运海星完成签到,获得积分10
11秒前
11秒前
赵小坤堃发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
陈嘻嘻嘻嘻完成签到,获得积分10
15秒前
星辰大海应助MADKAI采纳,获得10
15秒前
科研小白完成签到,获得积分10
16秒前
随缘完成签到 ,获得积分10
16秒前
倩倩完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997