Graph Convolutional Adversarial Networks for Spatiotemporal Anomaly Detection

鉴别器 异常检测 计算机科学 发电机(电路理论) 杠杆(统计) 数据挖掘 图形 人工智能 对抗制 探测器 实时计算 机器学习 理论计算机科学 物理 功率(物理) 电信 量子力学
作者
Leyan Deng,Defu Lian,Zhenya Huang,Enhong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2416-2428 被引量:65
标识
DOI:10.1109/tnnls.2021.3136171
摘要

Traffic anomalies, such as traffic accidents and unexpected crowd gathering, may endanger public safety if not handled timely. Detecting traffic anomalies in their early stage can benefit citizens' quality of life and city planning. However, traffic anomaly detection faces two main challenges. First, it is challenging to model traffic dynamics due to the complex spatiotemporal characteristics of traffic data. Second, the criteria of traffic anomalies may vary with locations and times. In this article, we propose a spatiotemporal graph convolutional adversarial network (STGAN) to address these above challenges. More specifically, we devise a spatiotemporal generator to predict the normal traffic dynamics and a spatiotemporal discriminator to determine whether an input sequence is real or not. There are high correlations between neighboring data points in the spatial and temporal dimensions. Therefore, we propose a recent module and leverage graph convolutional gated recurrent unit (GCGRU) to help the generator and discriminator learn the spatiotemporal features of traffic dynamics and traffic anomalies, respectively. After adversarial training, the generator and discriminator can be used as detectors independently, where the generator models the normal traffic dynamics patterns and the discriminator provides detection criteria varying with spatiotemporal features. We then design a novel anomaly score combining the abilities of two detectors, which considers the misleading of unpredictable traffic dynamics to the discriminator. We evaluate our method on two real-world datasets from New York City and California. The experimental results show that the proposed method detects various traffic anomalies effectively and outperforms the state-of-the-art methods. Furthermore, the devised anomaly score achieves more robust detection performances than the general score.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
浮游应助单薄的寻桃采纳,获得10
6秒前
9秒前
Jodie发布了新的文献求助10
11秒前
11秒前
科研通AI6应助nmeiko采纳,获得10
11秒前
12秒前
qxm完成签到 ,获得积分10
14秒前
15秒前
Quanta完成签到,获得积分10
16秒前
渔婆发布了新的文献求助10
17秒前
laruijoint完成签到,获得积分10
17秒前
淘气乌龙茶完成签到 ,获得积分10
18秒前
鹏程完成签到,获得积分10
20秒前
丘比特应助呆妞采纳,获得10
23秒前
24秒前
蔡克东发布了新的文献求助10
24秒前
LL完成签到 ,获得积分10
29秒前
小泡芙完成签到,获得积分10
30秒前
朱梦琳朱梦琳完成签到,获得积分10
31秒前
31秒前
31秒前
古藤完成签到 ,获得积分10
32秒前
36秒前
在水一方应助伯言采纳,获得10
36秒前
吴咪发布了新的文献求助10
36秒前
呆妞发布了新的文献求助10
37秒前
浮游应助Quanta采纳,获得10
38秒前
科目三应助少年游采纳,获得10
42秒前
吴咪完成签到,获得积分10
44秒前
45秒前
46秒前
47秒前
hai发布了新的文献求助10
50秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
Akim应助科研通管家采纳,获得10
51秒前
无极微光应助科研通管家采纳,获得20
51秒前
研友_VZG7GZ应助科研通管家采纳,获得10
51秒前
斯文败类应助科研通管家采纳,获得10
51秒前
小马甲应助科研通管家采纳,获得10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555