Graph Convolutional Adversarial Networks for Spatiotemporal Anomaly Detection

鉴别器 异常检测 计算机科学 发电机(电路理论) 杠杆(统计) 数据挖掘 图形 人工智能 对抗制 探测器 实时计算 机器学习 理论计算机科学 物理 功率(物理) 电信 量子力学
作者
Leyan Deng,Defu Lian,Zhenya Huang,Enhong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2416-2428 被引量:65
标识
DOI:10.1109/tnnls.2021.3136171
摘要

Traffic anomalies, such as traffic accidents and unexpected crowd gathering, may endanger public safety if not handled timely. Detecting traffic anomalies in their early stage can benefit citizens' quality of life and city planning. However, traffic anomaly detection faces two main challenges. First, it is challenging to model traffic dynamics due to the complex spatiotemporal characteristics of traffic data. Second, the criteria of traffic anomalies may vary with locations and times. In this article, we propose a spatiotemporal graph convolutional adversarial network (STGAN) to address these above challenges. More specifically, we devise a spatiotemporal generator to predict the normal traffic dynamics and a spatiotemporal discriminator to determine whether an input sequence is real or not. There are high correlations between neighboring data points in the spatial and temporal dimensions. Therefore, we propose a recent module and leverage graph convolutional gated recurrent unit (GCGRU) to help the generator and discriminator learn the spatiotemporal features of traffic dynamics and traffic anomalies, respectively. After adversarial training, the generator and discriminator can be used as detectors independently, where the generator models the normal traffic dynamics patterns and the discriminator provides detection criteria varying with spatiotemporal features. We then design a novel anomaly score combining the abilities of two detectors, which considers the misleading of unpredictable traffic dynamics to the discriminator. We evaluate our method on two real-world datasets from New York City and California. The experimental results show that the proposed method detects various traffic anomalies effectively and outperforms the state-of-the-art methods. Furthermore, the devised anomaly score achieves more robust detection performances than the general score.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
2秒前
飘逸薯片关注了科研通微信公众号
2秒前
爆米花应助六方金刚石采纳,获得10
2秒前
李爱国应助静花水月采纳,获得10
2秒前
思源应助成就的涵菡采纳,获得10
3秒前
kyhzxy发布了新的文献求助10
3秒前
大个应助ATREE采纳,获得10
3秒前
Halo_Dai发布了新的文献求助10
3秒前
CipherSage应助水123采纳,获得10
3秒前
3秒前
柱子发布了新的文献求助10
3秒前
4秒前
7秒前
8秒前
8秒前
玩命的觅珍完成签到,获得积分20
9秒前
10秒前
10秒前
请叫我过儿完成签到,获得积分10
12秒前
12秒前
清脆大米发布了新的文献求助10
12秒前
13秒前
粥粥粥发布了新的文献求助10
13秒前
13秒前
kyhzxy完成签到,获得积分10
14秒前
花深粥完成签到 ,获得积分10
15秒前
我是老大应助yaxuandeng采纳,获得10
15秒前
季生发布了新的文献求助30
18秒前
水何澹澹完成签到,获得积分0
18秒前
18秒前
wesley完成签到 ,获得积分0
18秒前
19秒前
章鱼发布了新的文献求助10
19秒前
lyp发布了新的文献求助30
19秒前
20秒前
jianjiao完成签到,获得积分10
20秒前
20秒前
机灵语雪完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601396
求助须知:如何正确求助?哪些是违规求助? 4686922
关于积分的说明 14846724
捐赠科研通 4680979
什么是DOI,文献DOI怎么找? 2539359
邀请新用户注册赠送积分活动 1506257
关于科研通互助平台的介绍 1471293