Graph Convolutional Adversarial Networks for Spatiotemporal Anomaly Detection

鉴别器 异常检测 计算机科学 发电机(电路理论) 杠杆(统计) 数据挖掘 图形 人工智能 对抗制 探测器 实时计算 机器学习 理论计算机科学 物理 功率(物理) 电信 量子力学
作者
Leyan Deng,Defu Lian,Zhenya Huang,Enhong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2416-2428 被引量:65
标识
DOI:10.1109/tnnls.2021.3136171
摘要

Traffic anomalies, such as traffic accidents and unexpected crowd gathering, may endanger public safety if not handled timely. Detecting traffic anomalies in their early stage can benefit citizens' quality of life and city planning. However, traffic anomaly detection faces two main challenges. First, it is challenging to model traffic dynamics due to the complex spatiotemporal characteristics of traffic data. Second, the criteria of traffic anomalies may vary with locations and times. In this article, we propose a spatiotemporal graph convolutional adversarial network (STGAN) to address these above challenges. More specifically, we devise a spatiotemporal generator to predict the normal traffic dynamics and a spatiotemporal discriminator to determine whether an input sequence is real or not. There are high correlations between neighboring data points in the spatial and temporal dimensions. Therefore, we propose a recent module and leverage graph convolutional gated recurrent unit (GCGRU) to help the generator and discriminator learn the spatiotemporal features of traffic dynamics and traffic anomalies, respectively. After adversarial training, the generator and discriminator can be used as detectors independently, where the generator models the normal traffic dynamics patterns and the discriminator provides detection criteria varying with spatiotemporal features. We then design a novel anomaly score combining the abilities of two detectors, which considers the misleading of unpredictable traffic dynamics to the discriminator. We evaluate our method on two real-world datasets from New York City and California. The experimental results show that the proposed method detects various traffic anomalies effectively and outperforms the state-of-the-art methods. Furthermore, the devised anomaly score achieves more robust detection performances than the general score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凌雪柯完成签到 ,获得积分10
刚刚
1秒前
小宇宙发布了新的文献求助10
1秒前
酷波er应助谢大喵采纳,获得10
1秒前
柯柯柯完成签到,获得积分10
1秒前
NexusExplorer应助zzzjh采纳,获得10
2秒前
WQQ发布了新的文献求助10
3秒前
4秒前
醉熏的豁完成签到,获得积分20
4秒前
4秒前
科研通AI6应助wanghao1024采纳,获得10
5秒前
跳跃桐完成签到,获得积分20
5秒前
6秒前
Duoduo完成签到,获得积分10
7秒前
Lucas应助lyh采纳,获得10
7秒前
zhuxy2020完成签到,获得积分20
7秒前
8秒前
光年完成签到 ,获得积分10
8秒前
跳跃桐发布了新的文献求助30
9秒前
10秒前
渴望者发布了新的文献求助10
11秒前
12秒前
13秒前
asdaas完成签到,获得积分10
14秒前
Ava应助涨涨涨采纳,获得30
14秒前
sks发布了新的文献求助10
15秒前
莫妮卡完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
在水一方应助111采纳,获得10
16秒前
16秒前
18秒前
斯文败类应助酱紫采纳,获得10
18秒前
19秒前
欢呼的傲丝完成签到,获得积分10
21秒前
皮卡丘完成签到 ,获得积分0
21秒前
23秒前
蛋蛋发布了新的文献求助10
23秒前
23秒前
科研通AI6应助23652采纳,获得10
23秒前
H恺发布了新的文献求助10
24秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443296
求助须知:如何正确求助?哪些是违规求助? 4553176
关于积分的说明 14241249
捐赠科研通 4474739
什么是DOI,文献DOI怎么找? 2452158
邀请新用户注册赠送积分活动 1443119
关于科研通互助平台的介绍 1418742