Graph Convolutional Adversarial Networks for Spatiotemporal Anomaly Detection

鉴别器 异常检测 计算机科学 发电机(电路理论) 杠杆(统计) 数据挖掘 图形 人工智能 对抗制 探测器 实时计算 机器学习 理论计算机科学 电信 功率(物理) 物理 量子力学
作者
Leyan Deng,Defu Lian,Zhenya Huang,Enhong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2416-2428 被引量:65
标识
DOI:10.1109/tnnls.2021.3136171
摘要

Traffic anomalies, such as traffic accidents and unexpected crowd gathering, may endanger public safety if not handled timely. Detecting traffic anomalies in their early stage can benefit citizens' quality of life and city planning. However, traffic anomaly detection faces two main challenges. First, it is challenging to model traffic dynamics due to the complex spatiotemporal characteristics of traffic data. Second, the criteria of traffic anomalies may vary with locations and times. In this article, we propose a spatiotemporal graph convolutional adversarial network (STGAN) to address these above challenges. More specifically, we devise a spatiotemporal generator to predict the normal traffic dynamics and a spatiotemporal discriminator to determine whether an input sequence is real or not. There are high correlations between neighboring data points in the spatial and temporal dimensions. Therefore, we propose a recent module and leverage graph convolutional gated recurrent unit (GCGRU) to help the generator and discriminator learn the spatiotemporal features of traffic dynamics and traffic anomalies, respectively. After adversarial training, the generator and discriminator can be used as detectors independently, where the generator models the normal traffic dynamics patterns and the discriminator provides detection criteria varying with spatiotemporal features. We then design a novel anomaly score combining the abilities of two detectors, which considers the misleading of unpredictable traffic dynamics to the discriminator. We evaluate our method on two real-world datasets from New York City and California. The experimental results show that the proposed method detects various traffic anomalies effectively and outperforms the state-of-the-art methods. Furthermore, the devised anomaly score achieves more robust detection performances than the general score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TS完成签到,获得积分10
刚刚
leapper完成签到 ,获得积分10
刚刚
1秒前
吃大西瓜不吐籽完成签到,获得积分10
2秒前
summer发布了新的文献求助10
3秒前
Owen应助恩典采纳,获得10
3秒前
白墨染发布了新的文献求助10
5秒前
5秒前
6秒前
吴彦祖完成签到,获得积分10
7秒前
7秒前
Hello应助羽生结弦的馨馨采纳,获得10
8秒前
sevenhill应助zwj采纳,获得10
9秒前
大方的涟妖完成签到 ,获得积分10
10秒前
恩典完成签到,获得积分10
10秒前
张宇琪完成签到,获得积分10
10秒前
zxyan发布了新的文献求助10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
11秒前
ho应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
阿汤2发布了新的文献求助10
11秒前
xxfsx应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
12秒前
韦鑫龙发布了新的文献求助10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
ho应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
Genger发布了新的文献求助30
12秒前
heavenhorse应助科研通管家采纳,获得30
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
xxfsx应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425655
求助须知:如何正确求助?哪些是违规求助? 4539576
关于积分的说明 14168992
捐赠科研通 4457277
什么是DOI,文献DOI怎么找? 2444461
邀请新用户注册赠送积分活动 1435388
关于科研通互助平台的介绍 1412838