Graph Convolutional Adversarial Networks for Spatiotemporal Anomaly Detection

鉴别器 异常检测 计算机科学 发电机(电路理论) 杠杆(统计) 数据挖掘 图形 人工智能 对抗制 探测器 实时计算 机器学习 理论计算机科学 电信 功率(物理) 物理 量子力学
作者
Leyan Deng,Defu Lian,Zhenya Huang,Enhong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2416-2428 被引量:65
标识
DOI:10.1109/tnnls.2021.3136171
摘要

Traffic anomalies, such as traffic accidents and unexpected crowd gathering, may endanger public safety if not handled timely. Detecting traffic anomalies in their early stage can benefit citizens' quality of life and city planning. However, traffic anomaly detection faces two main challenges. First, it is challenging to model traffic dynamics due to the complex spatiotemporal characteristics of traffic data. Second, the criteria of traffic anomalies may vary with locations and times. In this article, we propose a spatiotemporal graph convolutional adversarial network (STGAN) to address these above challenges. More specifically, we devise a spatiotemporal generator to predict the normal traffic dynamics and a spatiotemporal discriminator to determine whether an input sequence is real or not. There are high correlations between neighboring data points in the spatial and temporal dimensions. Therefore, we propose a recent module and leverage graph convolutional gated recurrent unit (GCGRU) to help the generator and discriminator learn the spatiotemporal features of traffic dynamics and traffic anomalies, respectively. After adversarial training, the generator and discriminator can be used as detectors independently, where the generator models the normal traffic dynamics patterns and the discriminator provides detection criteria varying with spatiotemporal features. We then design a novel anomaly score combining the abilities of two detectors, which considers the misleading of unpredictable traffic dynamics to the discriminator. We evaluate our method on two real-world datasets from New York City and California. The experimental results show that the proposed method detects various traffic anomalies effectively and outperforms the state-of-the-art methods. Furthermore, the devised anomaly score achieves more robust detection performances than the general score.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助陆东采纳,获得10
1秒前
1秒前
一路向南完成签到 ,获得积分10
1秒前
清脆道天完成签到,获得积分10
2秒前
2秒前
n1gern发布了新的文献求助10
3秒前
Wang发布了新的文献求助10
3秒前
WHY发布了新的文献求助10
4秒前
汉堡包应助T拐拐采纳,获得10
4秒前
DoIt完成签到,获得积分10
4秒前
4秒前
漂亮翅膀发布了新的文献求助10
4秒前
5秒前
el发布了新的文献求助10
5秒前
鲤鱼问雁发布了新的文献求助10
5秒前
开心的章鱼哥完成签到,获得积分10
6秒前
从容芮应助学术混子采纳,获得10
6秒前
倾心红枫林完成签到,获得积分10
7秒前
感谢大佬完成签到,获得积分10
8秒前
9秒前
烟花应助宇宙里的小海洋采纳,获得10
9秒前
11秒前
12秒前
12秒前
33发布了新的文献求助10
13秒前
漂亮翅膀完成签到,获得积分10
13秒前
bluekids完成签到,获得积分10
14秒前
汉堡包应助哭泣的采波采纳,获得10
15秒前
牧绯完成签到,获得积分10
16秒前
蘅大爷完成签到,获得积分10
16秒前
Huang_being发布了新的文献求助10
17秒前
淡定星星发布了新的文献求助10
18秒前
19秒前
19秒前
求助完成签到,获得积分10
19秒前
嘲风完成签到,获得积分10
20秒前
20秒前
FashionBoy应助33采纳,获得10
21秒前
Lian完成签到 ,获得积分20
21秒前
lzg完成签到,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312684
求助须知:如何正确求助?哪些是违规求助? 2945170
关于积分的说明 8523532
捐赠科研通 2620981
什么是DOI,文献DOI怎么找? 1433226
科研通“疑难数据库(出版商)”最低求助积分说明 664923
邀请新用户注册赠送积分活动 650255