亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Local-Global Context Aware Transformer for Language-Guided Video Segmentation

计算机科学 变压器 计算机视觉 人工智能 自然语言处理 分割 上下文模型 对象(语法) 量子力学 物理 电压
作者
Chen Liang,Wenguan Wang,Tianfei Zhou,Jiaxu Miao,Yawei Luo,Yi Yang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (8): 10055-10069 被引量:53
标识
DOI:10.1109/tpami.2023.3262578
摘要

We explore the task of language-guided video segmentation (LVS). Previous algorithms mostly adopt 3D CNNs to learn video representation, struggling to capture long-term context and easily suffering from visual-linguistic misalignment. In light of this, we present Locater (local-global context aware Transformer), which augments the Transformer architecture with a finite memory so as to query the entire video with the language expression in an efficient manner. The memory is designed to involve two components - one for persistently preserving global video content, and one for dynamically gathering local temporal context and segmentation history. Based on the memorized local-global context and the particular content of each frame, Locater holistically and flexibly comprehends the expression as an adaptive query vector for each frame. The vector is used to query the corresponding frame for mask generation. The memory also allows Locater to process videos with linear time complexity and constant size memory, while Transformer-style self-attention computation scales quadratically with sequence length. To thoroughly examine the visual grounding capability of LVS models, we contribute a new LVS dataset, A2D-S +, which is built upon A2D-S dataset but poses increased challenges in disambiguating among similar objects. Experiments on three LVS datasets and our A2D-S + show that Locater outperforms previous state-of-the-arts. Further, we won the 1st place in the Referring Video Object Segmentation Track of the 3rd Large-scale Video Object Segmentation Challenge, where Locater served as the foundation for the winning solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助白雪1996采纳,获得10
1秒前
芒果完成签到 ,获得积分10
9秒前
pass完成签到 ,获得积分10
14秒前
爆米花应助鳎mu采纳,获得10
17秒前
科研通AI2S应助guolong采纳,获得10
19秒前
ljc完成签到 ,获得积分10
19秒前
mashibeo完成签到,获得积分10
21秒前
22秒前
jyy应助科研通管家采纳,获得10
24秒前
jyy应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
大模型应助科研通管家采纳,获得10
24秒前
jyy应助科研通管家采纳,获得10
25秒前
cc应助科研通管家采纳,获得20
25秒前
jyy应助科研通管家采纳,获得10
25秒前
25秒前
31秒前
yuuuu01发布了新的文献求助10
34秒前
神外魔法师完成签到,获得积分10
40秒前
Aloha完成签到,获得积分10
42秒前
9778完成签到,获得积分10
46秒前
46秒前
9778发布了新的文献求助10
48秒前
53秒前
Hello应助Ddz采纳,获得10
55秒前
55秒前
Janice完成签到 ,获得积分10
56秒前
白雪1996完成签到,获得积分10
56秒前
科研人完成签到 ,获得积分10
57秒前
1分钟前
白雪1996发布了新的文献求助10
1分钟前
1分钟前
鸡翅发布了新的文献求助10
1分钟前
Foxjker完成签到 ,获得积分10
1分钟前
lucky发布了新的文献求助10
1分钟前
1分钟前
哪吒大闹小布丁完成签到,获得积分10
1分钟前
1分钟前
abc发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960024
求助须知:如何正确求助?哪些是违规求助? 3506229
关于积分的说明 11128439
捐赠科研通 3238225
什么是DOI,文献DOI怎么找? 1789582
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056