Local-Global Context Aware Transformer for Language-Guided Video Segmentation

计算机科学 变压器 计算机视觉 人工智能 自然语言处理 分割 上下文模型 对象(语法) 量子力学 物理 电压
作者
Chen Liang,Wenguan Wang,Tianfei Zhou,Jiaxu Miao,Yawei Luo,Yi Yang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (8): 10055-10069 被引量:53
标识
DOI:10.1109/tpami.2023.3262578
摘要

We explore the task of language-guided video segmentation (LVS). Previous algorithms mostly adopt 3D CNNs to learn video representation, struggling to capture long-term context and easily suffering from visual-linguistic misalignment. In light of this, we present Locater (local-global context aware Transformer), which augments the Transformer architecture with a finite memory so as to query the entire video with the language expression in an efficient manner. The memory is designed to involve two components - one for persistently preserving global video content, and one for dynamically gathering local temporal context and segmentation history. Based on the memorized local-global context and the particular content of each frame, Locater holistically and flexibly comprehends the expression as an adaptive query vector for each frame. The vector is used to query the corresponding frame for mask generation. The memory also allows Locater to process videos with linear time complexity and constant size memory, while Transformer-style self-attention computation scales quadratically with sequence length. To thoroughly examine the visual grounding capability of LVS models, we contribute a new LVS dataset, A2D-S +, which is built upon A2D-S dataset but poses increased challenges in disambiguating among similar objects. Experiments on three LVS datasets and our A2D-S + show that Locater outperforms previous state-of-the-arts. Further, we won the 1st place in the Referring Video Object Segmentation Track of the 3rd Large-scale Video Object Segmentation Challenge, where Locater served as the foundation for the winning solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qizhixu发布了新的文献求助10
1秒前
1秒前
yangbo给yangbo的求助进行了留言
2秒前
nyyyyyy完成签到,获得积分10
2秒前
3秒前
情怀应助滴滴滴采纳,获得10
3秒前
szmsnail完成签到,获得积分10
3秒前
Sunrising完成签到,获得积分10
3秒前
赵yy应助辛子采纳,获得10
3秒前
大意的白翠完成签到,获得积分10
4秒前
顾诺发布了新的文献求助10
4秒前
4秒前
田様应助贪玩的晓刚采纳,获得10
4秒前
5秒前
学不会科研完成签到,获得积分10
5秒前
xzj7789210发布了新的文献求助10
6秒前
zhou发布了新的文献求助10
6秒前
7秒前
red11发布了新的文献求助10
7秒前
亮秦完成签到,获得积分10
7秒前
标致的耳机完成签到,获得积分10
7秒前
望开心顺利毕业完成签到,获得积分10
7秒前
wen发布了新的文献求助10
8秒前
8秒前
小马甲应助小太阳采纳,获得30
8秒前
8秒前
朴实的之桃完成签到,获得积分10
8秒前
MechaniKer发布了新的文献求助10
8秒前
务实雁梅完成签到,获得积分10
8秒前
Phosphene发布了新的文献求助10
9秒前
RR发布了新的文献求助10
9秒前
风清月莹应助懦弱的妙彤采纳,获得10
9秒前
10秒前
shenwei发布了新的文献求助10
10秒前
yy完成签到,获得积分10
11秒前
11秒前
书一卷完成签到,获得积分10
12秒前
12秒前
RNAPW完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5270740
求助须知:如何正确求助?哪些是违规求助? 4428811
关于积分的说明 13786039
捐赠科研通 4306719
什么是DOI,文献DOI怎么找? 2363198
邀请新用户注册赠送积分活动 1358900
关于科研通互助平台的介绍 1321814