Local-Global Context Aware Transformer for Language-Guided Video Segmentation

计算机科学 变压器 计算机视觉 人工智能 自然语言处理 分割 上下文模型 对象(语法) 量子力学 物理 电压
作者
Chen Liang,Wenguan Wang,Tianfei Zhou,Jiaxu Miao,Yawei Luo,Yi Yang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (8): 10055-10069 被引量:53
标识
DOI:10.1109/tpami.2023.3262578
摘要

We explore the task of language-guided video segmentation (LVS). Previous algorithms mostly adopt 3D CNNs to learn video representation, struggling to capture long-term context and easily suffering from visual-linguistic misalignment. In light of this, we present Locater (local-global context aware Transformer), which augments the Transformer architecture with a finite memory so as to query the entire video with the language expression in an efficient manner. The memory is designed to involve two components - one for persistently preserving global video content, and one for dynamically gathering local temporal context and segmentation history. Based on the memorized local-global context and the particular content of each frame, Locater holistically and flexibly comprehends the expression as an adaptive query vector for each frame. The vector is used to query the corresponding frame for mask generation. The memory also allows Locater to process videos with linear time complexity and constant size memory, while Transformer-style self-attention computation scales quadratically with sequence length. To thoroughly examine the visual grounding capability of LVS models, we contribute a new LVS dataset, A2D-S +, which is built upon A2D-S dataset but poses increased challenges in disambiguating among similar objects. Experiments on three LVS datasets and our A2D-S + show that Locater outperforms previous state-of-the-arts. Further, we won the 1st place in the Referring Video Object Segmentation Track of the 3rd Large-scale Video Object Segmentation Challenge, where Locater served as the foundation for the winning solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
个性的南珍完成签到 ,获得积分10
2秒前
2秒前
筱潇完成签到,获得积分10
3秒前
碧蓝可乐发布了新的文献求助20
3秒前
洁净的小霸王完成签到 ,获得积分10
5秒前
6秒前
yu_Panda完成签到,获得积分10
6秒前
充电宝应助Cynthia采纳,获得10
7秒前
雨淋沐风完成签到,获得积分10
8秒前
英姑应助1234采纳,获得10
8秒前
筱潇发布了新的文献求助30
9秒前
领导范儿应助bigstone采纳,获得10
9秒前
翟老师完成签到,获得积分10
10秒前
10秒前
10秒前
隐形曼青应助无机盐采纳,获得10
10秒前
精明念寒发布了新的文献求助10
11秒前
12秒前
12秒前
maox1aoxin应助奋斗醉冬采纳,获得30
13秒前
所所应助sys采纳,获得10
14秒前
啊派平方发布了新的文献求助10
14秒前
15秒前
周周完成签到,获得积分10
15秒前
kk完成签到,获得积分10
16秒前
隐形曼青应助精明念寒采纳,获得10
16秒前
17秒前
怪味跳跳糖完成签到,获得积分10
17秒前
18秒前
畅快代柔完成签到 ,获得积分10
18秒前
18秒前
19秒前
人间草木完成签到,获得积分10
19秒前
李健应助olivia采纳,获得10
20秒前
呆萌的豌豆完成签到,获得积分10
22秒前
22秒前
1234发布了新的文献求助10
23秒前
24秒前
24秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218137
求助须知:如何正确求助?哪些是违规求助? 2867441
关于积分的说明 8156317
捐赠科研通 2534330
什么是DOI,文献DOI怎么找? 1366911
科研通“疑难数据库(出版商)”最低求助积分说明 644892
邀请新用户注册赠送积分活动 617922