Image super-resolution reconstruction algorithm based on significant network connection-collaborative migration structure

连接(主束) 计算机科学 算法 图像(数学) 人工智能 计算机视觉 数学 几何学
作者
Fengping An,Jianrong Wang
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:127: 103566-103566 被引量:5
标识
DOI:10.1016/j.dsp.2022.103566
摘要

Although deep learning is widely used in the field of image super-resolution reconstruction, the number of network layers and the complexity of deep learning models continue to increase, and the speed at which the difficulty of model training increases has exceeded the speed of network performance improvement. This situation prevents deep learning frameworks from fully utilizing their generalization ability in image super-resolution reconstruction. Moreover, the existing image reconstruction methods have the problem of partial information loss. Therefore, this paper first proposes a structure that simulates the feature extraction function in the visual attention mechanism in the convolutional neural network. We call this a significant network connection. The feature information extracted by the network architecture is more significant, while other information is less significant. This setup has a reduced impact on the resulting image reconstruction effect. Then, a network architecture focusing on collaborative information migration is proposed. This architecture can obtain the implicit domain of the intermediate state of the image domain to be reconstructed, and it can make the two networks use the learned hidden domain during the reconstruction process. The dual networks trained in this way are more symmetrical. This approach can better maintain the common feature information of the reconstructed image and effectively solve the problem of partial feature information loss in the image. The experimental results show that the texture, artificial effects and noise of the reconstructed image obtained by the method proposed in this paper are significantly improved over those of the images produced by other mainstream methods. In addition, the method proposed in this paper exhibits a certain degree of improvement over other deep learning methods in terms of model training speed and feature information retention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助鳗鱼文涛采纳,获得10
2秒前
落寞剑成完成签到 ,获得积分10
3秒前
甜美梦槐发布了新的文献求助10
3秒前
Liufgui应助DianaRang采纳,获得10
5秒前
大个应助云横秦岭家何在采纳,获得10
5秒前
8秒前
11秒前
12秒前
Michael应助快乐仙知采纳,获得20
14秒前
灵儿完成签到,获得积分10
15秒前
鳗鱼文涛发布了新的文献求助10
15秒前
研友_ngKyqn发布了新的文献求助10
15秒前
鸭屎香菜完成签到,获得积分10
15秒前
kittency完成签到 ,获得积分10
16秒前
哦哦完成签到 ,获得积分10
16秒前
18秒前
李岸完成签到,获得积分10
18秒前
SYLH应助欢hhh采纳,获得30
19秒前
晚星完成签到,获得积分10
19秒前
23秒前
RhapsodyHua发布了新的文献求助10
24秒前
25秒前
Rubby应助火星上问柳采纳,获得10
28秒前
v小飞侠101发布了新的文献求助10
29秒前
李柯莹发布了新的文献求助10
31秒前
怕黑半仙完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
40秒前
40秒前
枫于林完成签到 ,获得积分10
44秒前
45秒前
lml完成签到,获得积分10
45秒前
Mia发布了新的文献求助30
47秒前
RhapsodyHua完成签到,获得积分10
48秒前
49秒前
简单白风完成签到 ,获得积分10
51秒前
老默发布了新的文献求助10
51秒前
orixero应助29采纳,获得10
53秒前
希望天下0贩的0应助yiyi采纳,获得10
55秒前
小蘑菇应助carly采纳,获得10
56秒前
56秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167