Image super-resolution reconstruction algorithm based on significant network connection-collaborative migration structure

连接(主束) 计算机科学 算法 图像(数学) 人工智能 计算机视觉 数学 几何学
作者
Fengping An,Jianrong Wang
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:127: 103566-103566 被引量:5
标识
DOI:10.1016/j.dsp.2022.103566
摘要

Although deep learning is widely used in the field of image super-resolution reconstruction, the number of network layers and the complexity of deep learning models continue to increase, and the speed at which the difficulty of model training increases has exceeded the speed of network performance improvement. This situation prevents deep learning frameworks from fully utilizing their generalization ability in image super-resolution reconstruction. Moreover, the existing image reconstruction methods have the problem of partial information loss. Therefore, this paper first proposes a structure that simulates the feature extraction function in the visual attention mechanism in the convolutional neural network. We call this a significant network connection. The feature information extracted by the network architecture is more significant, while other information is less significant. This setup has a reduced impact on the resulting image reconstruction effect. Then, a network architecture focusing on collaborative information migration is proposed. This architecture can obtain the implicit domain of the intermediate state of the image domain to be reconstructed, and it can make the two networks use the learned hidden domain during the reconstruction process. The dual networks trained in this way are more symmetrical. This approach can better maintain the common feature information of the reconstructed image and effectively solve the problem of partial feature information loss in the image. The experimental results show that the texture, artificial effects and noise of the reconstructed image obtained by the method proposed in this paper are significantly improved over those of the images produced by other mainstream methods. In addition, the method proposed in this paper exhibits a certain degree of improvement over other deep learning methods in terms of model training speed and feature information retention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助么一嗷喵采纳,获得10
刚刚
Lucas应助dong采纳,获得10
1秒前
Owen应助年轻的翠采纳,获得10
2秒前
友好的晓夏完成签到,获得积分10
2秒前
先锋发布了新的文献求助10
3秒前
赘婿应助撒玉采纳,获得10
3秒前
3秒前
keyango完成签到,获得积分20
3秒前
田様应助柠檬茶采纳,获得30
4秒前
4秒前
张益萌应助活着斯采纳,获得30
5秒前
充电宝应助武玉坤采纳,获得10
6秒前
打打应助那西西采纳,获得10
6秒前
7秒前
ldm发布了新的文献求助10
7秒前
俺村俺最牛完成签到 ,获得积分10
7秒前
7秒前
可爱安筠发布了新的文献求助10
8秒前
lz完成签到,获得积分10
8秒前
SciGPT应助鲤鱼吐司采纳,获得10
9秒前
huihua发布了新的文献求助10
9秒前
无花果应助kk采纳,获得30
9秒前
FleurdelisDZhang完成签到,获得积分10
10秒前
ZJJZ完成签到,获得积分10
10秒前
烂漫的数据线完成签到,获得积分10
10秒前
流云发布了新的文献求助10
11秒前
Ava应助BYN采纳,获得10
11秒前
彭于彦祖应助Vicky采纳,获得30
12秒前
Young离子完成签到 ,获得积分10
12秒前
12秒前
Jasper应助南提采纳,获得10
12秒前
金宝发布了新的文献求助10
13秒前
雪白的威完成签到,获得积分10
14秒前
14秒前
Lyncus应助无聊的飞珍采纳,获得10
15秒前
英俊的铭应助谨慎冬莲采纳,获得50
15秒前
健忘的沛蓝完成签到 ,获得积分10
16秒前
17秒前
开朗的菠萝头完成签到,获得积分10
17秒前
直率的心情完成签到,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
金属中的晶界偏聚 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296818
求助须知:如何正确求助?哪些是违规求助? 2932518
关于积分的说明 8457314
捐赠科研通 2605021
什么是DOI,文献DOI怎么找? 1422147
科研通“疑难数据库(出版商)”最低求助积分说明 661308
邀请新用户注册赠送积分活动 644397