亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image super-resolution reconstruction algorithm based on significant network connection-collaborative migration structure

连接(主束) 计算机科学 算法 图像(数学) 人工智能 计算机视觉 数学 几何学
作者
Fengping An,Jianrong Wang
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:127: 103566-103566 被引量:5
标识
DOI:10.1016/j.dsp.2022.103566
摘要

Although deep learning is widely used in the field of image super-resolution reconstruction, the number of network layers and the complexity of deep learning models continue to increase, and the speed at which the difficulty of model training increases has exceeded the speed of network performance improvement. This situation prevents deep learning frameworks from fully utilizing their generalization ability in image super-resolution reconstruction. Moreover, the existing image reconstruction methods have the problem of partial information loss. Therefore, this paper first proposes a structure that simulates the feature extraction function in the visual attention mechanism in the convolutional neural network. We call this a significant network connection. The feature information extracted by the network architecture is more significant, while other information is less significant. This setup has a reduced impact on the resulting image reconstruction effect. Then, a network architecture focusing on collaborative information migration is proposed. This architecture can obtain the implicit domain of the intermediate state of the image domain to be reconstructed, and it can make the two networks use the learned hidden domain during the reconstruction process. The dual networks trained in this way are more symmetrical. This approach can better maintain the common feature information of the reconstructed image and effectively solve the problem of partial feature information loss in the image. The experimental results show that the texture, artificial effects and noise of the reconstructed image obtained by the method proposed in this paper are significantly improved over those of the images produced by other mainstream methods. In addition, the method proposed in this paper exhibits a certain degree of improvement over other deep learning methods in terms of model training speed and feature information retention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
CipherSage应助枫桥夜泊采纳,获得10
3秒前
bless完成签到 ,获得积分10
5秒前
sun发布了新的文献求助10
8秒前
13秒前
18秒前
英姑应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
枫桥夜泊发布了新的文献求助10
23秒前
Becky完成签到 ,获得积分10
33秒前
49秒前
58秒前
sai完成签到,获得积分10
59秒前
1分钟前
英姑应助jj采纳,获得10
1分钟前
safari发布了新的文献求助10
1分钟前
xlz110完成签到,获得积分10
1分钟前
1分钟前
jj发布了新的文献求助10
1分钟前
奔跑的小熊完成签到 ,获得积分10
1分钟前
星辰大海应助Becky采纳,获得10
1分钟前
1分钟前
jj完成签到,获得积分10
1分钟前
尹恩惠完成签到,获得积分10
1分钟前
张张完成签到,获得积分10
1分钟前
流水z完成签到 ,获得积分0
1分钟前
马马完成签到 ,获得积分10
1分钟前
枫桥夜泊完成签到 ,获得积分10
1分钟前
张张发布了新的文献求助10
1分钟前
马马完成签到 ,获得积分10
2分钟前
王木木完成签到 ,获得积分10
2分钟前
Criminology34应助Rinamamiya采纳,获得10
2分钟前
悲伤的小袁应助王冠军采纳,获得10
2分钟前
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
小帅完成签到 ,获得积分10
2分钟前
2分钟前
Criminology34应助Rinamamiya采纳,获得30
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952307
求助须知:如何正确求助?哪些是违规求助? 4215050
关于积分的说明 13110841
捐赠科研通 3996919
什么是DOI,文献DOI怎么找? 2187692
邀请新用户注册赠送积分活动 1202971
关于科研通互助平台的介绍 1115710