Optimizing Unconventional Hydraulic Fracturing Design Using Machine Learning and Artificial Intelligent

油页岩 水力压裂 各向异性 磁导率 断裂(地质) 工作流程 地质学 石油工程 模数 多物理 计算机科学 岩土工程 材料科学 工程类 结构工程 数据库 有限元法 量子力学 生物 复合材料 遗传学 古生物学 物理
作者
Aymen Alhemdi,Ming Gu
标识
DOI:10.2118/209269-ms
摘要

Abstract For optimizing the hydraulic fracture design in shales, it is challenging to understand the impact of several different parameters on fracture propagation and production, such as geomechanical properties and fracturing treatment parameters. Current frac simulators do not exhibit consideration of the anisotropy of rock elasticity in the shales. Additionally, using the fracture simulation linked with reservoir simulation for the parametric study is low efficient. Due to its lamination nature, shale has different geomechanical properties along with the directions vertically and horizontally. Anisotropic elastic properties and stresses lead to more complications for predicting the fracture. This study introduces a comprehensive workflow for fracturing design optimization by applying supervised machine learning. The research also aims to develop an algorithm that can help any shale reservoir optimize the pumping treatment design of hydraulic fracture. The workflow is divided into six steps. Firstly, acoustic and density logs for a research well in Marcellus shale are used to interpret Young's modulus, Poisson's ratio, and minimum horizontal stress magnitude by anisotropic VTI model. In step 2, the interpreted mechanical properties, including the current treatment design of the target well, are inserted into the frac simulator to obtain the conductivity distribution inside the fracture. The conductivity distribution converts to fracture permeability matrix. As for the third step, the fracture permeability matrix is consequently entered into the reservoir model for estimating the production. The output production is matched with the field history data. For the fourth step, a random sampling algorithm is applied to build a database with a rational sample size. In step 5, the generated database is employed to train and validate an artificial neural network model (ANN). Lastly, parametric studies are performed through the trained ANN model to analyze the multi-parameter effect on cumulative production. This workflow can predict the early and late production for a given fracture design based on multiple fracture treatment parameters such as initial fracture depth, cluster numbers of each stage, and proppant type. Besides, the study provides a capability for multivariable analysis to better understand the productivity behavior of the fractured well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斑比完成签到,获得积分10
刚刚
汉堡包应助学就完了采纳,获得10
1秒前
2秒前
ye完成签到,获得积分10
2秒前
ZHOUCHENG发布了新的文献求助10
4秒前
由哎完成签到,获得积分10
4秒前
虚心的寒梦完成签到,获得积分10
4秒前
皮颤完成签到,获得积分10
6秒前
寻道图强应助ajin采纳,获得50
6秒前
橘里散花完成签到,获得积分10
8秒前
klandcy发布了新的文献求助10
8秒前
JayL完成签到,获得积分10
8秒前
Owen应助柯柯啦啦采纳,获得10
14秒前
橘里散花发布了新的文献求助10
15秒前
15秒前
17秒前
zj杰完成签到,获得积分20
17秒前
ZM完成签到 ,获得积分10
18秒前
Orange应助Mr. JDW采纳,获得10
19秒前
李健应助Jamie123采纳,获得10
20秒前
李健应助听话的黑夜采纳,获得10
20秒前
Wu完成签到,获得积分10
21秒前
炸毛完成签到,获得积分10
21秒前
上官若男应助vivian26采纳,获得10
22秒前
常大有发布了新的文献求助20
22秒前
23秒前
卡卡罗特完成签到 ,获得积分10
23秒前
骆驼林子完成签到,获得积分10
23秒前
34101127完成签到,获得积分10
25秒前
25秒前
26秒前
28秒前
SSSSSS完成签到,获得积分10
28秒前
chowhappy完成签到,获得积分10
28秒前
高大凌寒应助橘里散花采纳,获得10
28秒前
llk发布了新的文献求助10
29秒前
叶小徐完成签到 ,获得积分10
32秒前
自觉的山河完成签到,获得积分10
34秒前
李健的小迷弟应助llk采纳,获得10
34秒前
Yii发布了新的文献求助10
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159888
求助须知:如何正确求助?哪些是违规求助? 2810893
关于积分的说明 7889801
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630761
版权声明 602012