Optimizing Unconventional Hydraulic Fracturing Design Using Machine Learning and Artificial Intelligent

油页岩 水力压裂 各向异性 磁导率 断裂(地质) 工作流程 地质学 石油工程 模数 多物理 计算机科学 岩土工程 材料科学 工程类 结构工程 数据库 有限元法 量子力学 生物 复合材料 遗传学 古生物学 物理
作者
Aymen Alhemdi,Ming Gu
标识
DOI:10.2118/209269-ms
摘要

Abstract For optimizing the hydraulic fracture design in shales, it is challenging to understand the impact of several different parameters on fracture propagation and production, such as geomechanical properties and fracturing treatment parameters. Current frac simulators do not exhibit consideration of the anisotropy of rock elasticity in the shales. Additionally, using the fracture simulation linked with reservoir simulation for the parametric study is low efficient. Due to its lamination nature, shale has different geomechanical properties along with the directions vertically and horizontally. Anisotropic elastic properties and stresses lead to more complications for predicting the fracture. This study introduces a comprehensive workflow for fracturing design optimization by applying supervised machine learning. The research also aims to develop an algorithm that can help any shale reservoir optimize the pumping treatment design of hydraulic fracture. The workflow is divided into six steps. Firstly, acoustic and density logs for a research well in Marcellus shale are used to interpret Young's modulus, Poisson's ratio, and minimum horizontal stress magnitude by anisotropic VTI model. In step 2, the interpreted mechanical properties, including the current treatment design of the target well, are inserted into the frac simulator to obtain the conductivity distribution inside the fracture. The conductivity distribution converts to fracture permeability matrix. As for the third step, the fracture permeability matrix is consequently entered into the reservoir model for estimating the production. The output production is matched with the field history data. For the fourth step, a random sampling algorithm is applied to build a database with a rational sample size. In step 5, the generated database is employed to train and validate an artificial neural network model (ANN). Lastly, parametric studies are performed through the trained ANN model to analyze the multi-parameter effect on cumulative production. This workflow can predict the early and late production for a given fracture design based on multiple fracture treatment parameters such as initial fracture depth, cluster numbers of each stage, and proppant type. Besides, the study provides a capability for multivariable analysis to better understand the productivity behavior of the fractured well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Silence完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
2秒前
lilusi发布了新的文献求助10
2秒前
2秒前
2秒前
shaojing发布了新的文献求助10
2秒前
esther颖完成签到,获得积分10
2秒前
自觉的书蝶完成签到,获得积分10
2秒前
最好是完成签到,获得积分10
2秒前
SSR发布了新的文献求助10
2秒前
爱撒娇的长颈鹿完成签到,获得积分10
3秒前
3秒前
xukaixuan001发布了新的文献求助10
3秒前
容二遥发布了新的文献求助10
4秒前
在水一方应助摸俞采纳,获得10
4秒前
最初的远方完成签到,获得积分10
4秒前
4秒前
5秒前
One发布了新的文献求助10
5秒前
5秒前
gs666666发布了新的文献求助10
6秒前
xueerbx完成签到,获得积分10
6秒前
lancelot发布了新的文献求助10
6秒前
雨恋凡尘完成签到,获得积分0
6秒前
迷途完成签到,获得积分10
6秒前
愉快的莹发布了新的文献求助10
6秒前
专注追命完成签到,获得积分10
7秒前
地表飞猪发布了新的文献求助10
8秒前
NexusExplorer应助少川采纳,获得10
8秒前
8秒前
duoya发布了新的文献求助10
8秒前
li发布了新的文献求助10
8秒前
MX120251336发布了新的文献求助10
8秒前
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699639
求助须知:如何正确求助?哪些是违规求助? 5132174
关于积分的说明 15227194
捐赠科研通 4854644
什么是DOI,文献DOI怎么找? 2604831
邀请新用户注册赠送积分活动 1556206
关于科研通互助平台的介绍 1514427