清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimizing Unconventional Hydraulic Fracturing Design Using Machine Learning and Artificial Intelligent

油页岩 水力压裂 各向异性 磁导率 断裂(地质) 工作流程 地质学 石油工程 模数 多物理 计算机科学 岩土工程 材料科学 工程类 结构工程 数据库 有限元法 量子力学 生物 复合材料 遗传学 古生物学 物理
作者
Aymen Alhemdi,Ming Gu
标识
DOI:10.2118/209269-ms
摘要

Abstract For optimizing the hydraulic fracture design in shales, it is challenging to understand the impact of several different parameters on fracture propagation and production, such as geomechanical properties and fracturing treatment parameters. Current frac simulators do not exhibit consideration of the anisotropy of rock elasticity in the shales. Additionally, using the fracture simulation linked with reservoir simulation for the parametric study is low efficient. Due to its lamination nature, shale has different geomechanical properties along with the directions vertically and horizontally. Anisotropic elastic properties and stresses lead to more complications for predicting the fracture. This study introduces a comprehensive workflow for fracturing design optimization by applying supervised machine learning. The research also aims to develop an algorithm that can help any shale reservoir optimize the pumping treatment design of hydraulic fracture. The workflow is divided into six steps. Firstly, acoustic and density logs for a research well in Marcellus shale are used to interpret Young's modulus, Poisson's ratio, and minimum horizontal stress magnitude by anisotropic VTI model. In step 2, the interpreted mechanical properties, including the current treatment design of the target well, are inserted into the frac simulator to obtain the conductivity distribution inside the fracture. The conductivity distribution converts to fracture permeability matrix. As for the third step, the fracture permeability matrix is consequently entered into the reservoir model for estimating the production. The output production is matched with the field history data. For the fourth step, a random sampling algorithm is applied to build a database with a rational sample size. In step 5, the generated database is employed to train and validate an artificial neural network model (ANN). Lastly, parametric studies are performed through the trained ANN model to analyze the multi-parameter effect on cumulative production. This workflow can predict the early and late production for a given fracture design based on multiple fracture treatment parameters such as initial fracture depth, cluster numbers of each stage, and proppant type. Besides, the study provides a capability for multivariable analysis to better understand the productivity behavior of the fractured well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Funnymudpee发布了新的文献求助10
7秒前
12秒前
MTF完成签到 ,获得积分10
39秒前
48秒前
54秒前
Eileen完成签到 ,获得积分0
54秒前
合不着完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
天玄发布了新的文献求助10
4分钟前
4分钟前
4分钟前
天玄发布了新的文献求助10
4分钟前
4分钟前
糟糕的翅膀完成签到,获得积分10
4分钟前
cy0824完成签到 ,获得积分10
5分钟前
5分钟前
披着羊皮的狼完成签到 ,获得积分10
5分钟前
5分钟前
天玄发布了新的文献求助10
5分钟前
5分钟前
无悔完成签到 ,获得积分10
5分钟前
迷茫的一代完成签到,获得积分10
5分钟前
5分钟前
天玄发布了新的文献求助10
5分钟前
5分钟前
6分钟前
6分钟前
wzbc完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482509
求助须知:如何正确求助?哪些是违规求助? 4583305
关于积分的说明 14389165
捐赠科研通 4512439
什么是DOI,文献DOI怎么找? 2472945
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624