已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimizing Unconventional Hydraulic Fracturing Design Using Machine Learning and Artificial Intelligent

油页岩 水力压裂 各向异性 磁导率 断裂(地质) 工作流程 地质学 石油工程 模数 多物理 计算机科学 岩土工程 材料科学 工程类 结构工程 数据库 有限元法 量子力学 生物 复合材料 遗传学 古生物学 物理
作者
Aymen Alhemdi,Ming Gu
标识
DOI:10.2118/209269-ms
摘要

Abstract For optimizing the hydraulic fracture design in shales, it is challenging to understand the impact of several different parameters on fracture propagation and production, such as geomechanical properties and fracturing treatment parameters. Current frac simulators do not exhibit consideration of the anisotropy of rock elasticity in the shales. Additionally, using the fracture simulation linked with reservoir simulation for the parametric study is low efficient. Due to its lamination nature, shale has different geomechanical properties along with the directions vertically and horizontally. Anisotropic elastic properties and stresses lead to more complications for predicting the fracture. This study introduces a comprehensive workflow for fracturing design optimization by applying supervised machine learning. The research also aims to develop an algorithm that can help any shale reservoir optimize the pumping treatment design of hydraulic fracture. The workflow is divided into six steps. Firstly, acoustic and density logs for a research well in Marcellus shale are used to interpret Young's modulus, Poisson's ratio, and minimum horizontal stress magnitude by anisotropic VTI model. In step 2, the interpreted mechanical properties, including the current treatment design of the target well, are inserted into the frac simulator to obtain the conductivity distribution inside the fracture. The conductivity distribution converts to fracture permeability matrix. As for the third step, the fracture permeability matrix is consequently entered into the reservoir model for estimating the production. The output production is matched with the field history data. For the fourth step, a random sampling algorithm is applied to build a database with a rational sample size. In step 5, the generated database is employed to train and validate an artificial neural network model (ANN). Lastly, parametric studies are performed through the trained ANN model to analyze the multi-parameter effect on cumulative production. This workflow can predict the early and late production for a given fracture design based on multiple fracture treatment parameters such as initial fracture depth, cluster numbers of each stage, and proppant type. Besides, the study provides a capability for multivariable analysis to better understand the productivity behavior of the fractured well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WLH发布了新的文献求助30
1秒前
爆米花应助祝小鱼采纳,获得30
1秒前
halo发布了新的文献求助10
3秒前
7秒前
lzq完成签到 ,获得积分10
10秒前
winnie完成签到 ,获得积分10
10秒前
一方发布了新的文献求助10
13秒前
迷路宛筠完成签到 ,获得积分10
14秒前
研友_Zb1rln完成签到,获得积分10
17秒前
Star发布了新的文献求助10
22秒前
GlockieZhao完成签到,获得积分10
22秒前
23秒前
琳666完成签到,获得积分10
27秒前
qiu发布了新的文献求助10
27秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
天天快乐应助科研通管家采纳,获得10
29秒前
英俊的铭应助科研通管家采纳,获得10
29秒前
上官若男应助科研通管家采纳,获得10
29秒前
29秒前
GPTea应助科研通管家采纳,获得50
29秒前
29秒前
29秒前
Arturo应助科研通管家采纳,获得10
29秒前
31秒前
xiuxiuzhang完成签到 ,获得积分10
32秒前
山东老铁完成签到,获得积分10
33秒前
单薄绿竹完成签到,获得积分10
33秒前
qiu完成签到,获得积分10
34秒前
苏苏发布了新的文献求助10
36秒前
英姑应助Quinta采纳,获得10
36秒前
38秒前
占稚晴完成签到,获得积分10
39秒前
JamesPei应助2211采纳,获得10
41秒前
柚子完成签到 ,获得积分10
41秒前
鲁路修完成签到,获得积分10
45秒前
十五完成签到,获得积分10
47秒前
47秒前
Quinta完成签到,获得积分10
47秒前
加缪应助Rsquo采纳,获得10
48秒前
挚智完成签到 ,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925829
求助须知:如何正确求助?哪些是违规求助? 4195977
关于积分的说明 13031425
捐赠科研通 3967571
什么是DOI,文献DOI怎么找? 2174676
邀请新用户注册赠送积分活动 1191853
关于科研通互助平台的介绍 1101678