Optimizing Unconventional Hydraulic Fracturing Design Using Machine Learning and Artificial Intelligent

油页岩 水力压裂 各向异性 磁导率 断裂(地质) 工作流程 地质学 石油工程 模数 多物理 计算机科学 岩土工程 材料科学 工程类 结构工程 数据库 有限元法 量子力学 生物 复合材料 遗传学 古生物学 物理
作者
Aymen Alhemdi,Ming Gu
标识
DOI:10.2118/209269-ms
摘要

Abstract For optimizing the hydraulic fracture design in shales, it is challenging to understand the impact of several different parameters on fracture propagation and production, such as geomechanical properties and fracturing treatment parameters. Current frac simulators do not exhibit consideration of the anisotropy of rock elasticity in the shales. Additionally, using the fracture simulation linked with reservoir simulation for the parametric study is low efficient. Due to its lamination nature, shale has different geomechanical properties along with the directions vertically and horizontally. Anisotropic elastic properties and stresses lead to more complications for predicting the fracture. This study introduces a comprehensive workflow for fracturing design optimization by applying supervised machine learning. The research also aims to develop an algorithm that can help any shale reservoir optimize the pumping treatment design of hydraulic fracture. The workflow is divided into six steps. Firstly, acoustic and density logs for a research well in Marcellus shale are used to interpret Young's modulus, Poisson's ratio, and minimum horizontal stress magnitude by anisotropic VTI model. In step 2, the interpreted mechanical properties, including the current treatment design of the target well, are inserted into the frac simulator to obtain the conductivity distribution inside the fracture. The conductivity distribution converts to fracture permeability matrix. As for the third step, the fracture permeability matrix is consequently entered into the reservoir model for estimating the production. The output production is matched with the field history data. For the fourth step, a random sampling algorithm is applied to build a database with a rational sample size. In step 5, the generated database is employed to train and validate an artificial neural network model (ANN). Lastly, parametric studies are performed through the trained ANN model to analyze the multi-parameter effect on cumulative production. This workflow can predict the early and late production for a given fracture design based on multiple fracture treatment parameters such as initial fracture depth, cluster numbers of each stage, and proppant type. Besides, the study provides a capability for multivariable analysis to better understand the productivity behavior of the fractured well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
干净秋寒发布了新的文献求助10
刚刚
平淡远山完成签到,获得积分10
刚刚
追寻的访文完成签到,获得积分10
刚刚
华仔应助潮哈哈耶采纳,获得10
1秒前
1秒前
feitanmbio发布了新的文献求助20
1秒前
壮观溪流完成签到 ,获得积分10
2秒前
2秒前
天天快乐应助大山采纳,获得10
2秒前
2秒前
2秒前
星辰大海应助欧克采纳,获得10
2秒前
李爱国应助调皮的巧凡采纳,获得10
3秒前
篮乐艺完成签到 ,获得积分10
3秒前
小吴小吴完成签到,获得积分10
3秒前
叉叉发布了新的文献求助10
4秒前
俭朴晓凡完成签到,获得积分20
4秒前
4秒前
orixero应助自觉笑旋采纳,获得10
5秒前
6秒前
浩然山河完成签到,获得积分10
6秒前
zgrmws应助yy采纳,获得50
6秒前
6秒前
听风轻语发布了新的文献求助10
7秒前
烂漫的以南完成签到,获得积分20
7秒前
8秒前
汉堡包应助kll采纳,获得10
8秒前
缥缈水风发布了新的文献求助10
8秒前
h7nho发布了新的文献求助10
9秒前
天天快乐应助含蓄绿兰采纳,获得10
9秒前
慕青应助调皮的巧凡采纳,获得10
9秒前
辛勤静珊完成签到 ,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
实干的多春鱼完成签到,获得积分10
12秒前
科研通AI6.1应助ATY采纳,获得10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5758857
求助须知:如何正确求助?哪些是违规求助? 5517902
关于积分的说明 15392220
捐赠科研通 4896062
什么是DOI,文献DOI怎么找? 2633520
邀请新用户注册赠送积分活动 1581545
关于科研通互助平台的介绍 1537173