Optimizing Unconventional Hydraulic Fracturing Design Using Machine Learning and Artificial Intelligent

油页岩 水力压裂 各向异性 磁导率 断裂(地质) 工作流程 地质学 石油工程 模数 多物理 计算机科学 岩土工程 材料科学 工程类 结构工程 数据库 有限元法 物理 复合材料 古生物学 生物 量子力学 遗传学
作者
Aymen Alhemdi,Ming Gu
标识
DOI:10.2118/209269-ms
摘要

Abstract For optimizing the hydraulic fracture design in shales, it is challenging to understand the impact of several different parameters on fracture propagation and production, such as geomechanical properties and fracturing treatment parameters. Current frac simulators do not exhibit consideration of the anisotropy of rock elasticity in the shales. Additionally, using the fracture simulation linked with reservoir simulation for the parametric study is low efficient. Due to its lamination nature, shale has different geomechanical properties along with the directions vertically and horizontally. Anisotropic elastic properties and stresses lead to more complications for predicting the fracture. This study introduces a comprehensive workflow for fracturing design optimization by applying supervised machine learning. The research also aims to develop an algorithm that can help any shale reservoir optimize the pumping treatment design of hydraulic fracture. The workflow is divided into six steps. Firstly, acoustic and density logs for a research well in Marcellus shale are used to interpret Young's modulus, Poisson's ratio, and minimum horizontal stress magnitude by anisotropic VTI model. In step 2, the interpreted mechanical properties, including the current treatment design of the target well, are inserted into the frac simulator to obtain the conductivity distribution inside the fracture. The conductivity distribution converts to fracture permeability matrix. As for the third step, the fracture permeability matrix is consequently entered into the reservoir model for estimating the production. The output production is matched with the field history data. For the fourth step, a random sampling algorithm is applied to build a database with a rational sample size. In step 5, the generated database is employed to train and validate an artificial neural network model (ANN). Lastly, parametric studies are performed through the trained ANN model to analyze the multi-parameter effect on cumulative production. This workflow can predict the early and late production for a given fracture design based on multiple fracture treatment parameters such as initial fracture depth, cluster numbers of each stage, and proppant type. Besides, the study provides a capability for multivariable analysis to better understand the productivity behavior of the fractured well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lll应助大学生采纳,获得10
1秒前
小余同学完成签到,获得积分10
1秒前
JHL发布了新的文献求助10
1秒前
2秒前
天天快乐应助果实采纳,获得10
3秒前
陈一口完成签到 ,获得积分10
4秒前
thk1234完成签到,获得积分10
5秒前
7秒前
ED应助JHL采纳,获得10
8秒前
李健应助an12138采纳,获得10
8秒前
英姑应助甜甜圈采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
独特的兰完成签到,获得积分10
9秒前
宗铁强完成签到,获得积分20
13秒前
wanci应助淮雨巷陌采纳,获得10
13秒前
wind2631完成签到,获得积分10
14秒前
14秒前
李健应助科研通管家采纳,获得10
15秒前
yar应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
yar应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
yar应助科研通管家采纳,获得10
15秒前
yar应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
16秒前
16秒前
上官若男应助科研通管家采纳,获得30
16秒前
yar应助科研通管家采纳,获得10
16秒前
ED应助科研通管家采纳,获得10
16秒前
LiuDongqian发布了新的文献求助10
17秒前
弈心完成签到 ,获得积分10
18秒前
李小燕发布了新的文献求助10
18秒前
19秒前
19秒前
22秒前
大威天龙发布了新的文献求助10
23秒前
赘婿应助SMLW采纳,获得10
23秒前
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507317
关于积分的说明 11135554
捐赠科研通 3239809
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872380
科研通“疑难数据库(出版商)”最低求助积分说明 803150