Maize Canopy and Leaf Chlorophyll Content Assessment from Leaf Spectral Reflectance: Estimation and Uncertainty Analysis across Growth Stages and Vertical Distribution

天蓬 红边 叶绿素 环境科学 生长季节 叶面积指数 阶段(地层学) 反射率 氮气 遥感 农学 植物 数学 生物 化学 地质学 光学 古生物学 物理 有机化学
作者
Hongye Yang,Bo Ming,Chenwei Nie,Beibei Xue,Jiangfeng Xin,Xingli Lu,Jun Xue,Peng Hou,Ruizhi Xie,Keru Wang,Shaokun Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (9): 2115-2115 被引量:18
标识
DOI:10.3390/rs14092115
摘要

Accurate estimation of the canopy chlorophyll content (CCC) plays a key role in quantitative remote sensing. Maize (Zea mays L.) is a high-stalk crop with a large leaf area and deep canopy. It has a non-uniform vertical distribution of the leaf chlorophyll content (LCC), which limits remote sensing of CCC. Therefore, it is crucial to understand the vertical heterogeneity of LCC and leaf reflectance spectra to improve the accuracy of CCC monitoring. In this study, CCC, LCC, and leaf spectral reflectance were measured during two consecutive field growing seasons under five nitrogen treatments. The vertical LCC profile showed an asymmetric ‘bell-shaped’ curve structure and was affected by nitrogen application. The leaf reflectance also varied greatly between spatio–temporal conditions, which could indicate the influence of vertical heterogeneity. In the early growth stage, the spectral differences between leaf positions were mainly concentrated in the red-edge (RE) and near-infrared (NIR) regions, whereas differences were concentrated in the visible region during the mid-late filling stage. LCC had a strong linear correlation with vegetation indices (VIs), such as the modified red-edge ratio (mRER, R2 = 0.87), but the VI–chlorophyll models showed significant inversion errors throughout the growth season, especially at the early vegetative growth stage and the late filling stage (rRMSE values ranged from 36% to 87.4%). The vertical distribution of LCC had a strong correlation with the total chlorophyll in canopy, and sensitive leaf positions were identified with a multiple stepwise regression (MSR) model. The LCC of leaf positions L6 in the vegetative stage (R2-adj = 0.9) and L11 + L14 in the reproductive stage (R2-adj = 0.93) could be used to evaluate the canopy chlorophyll status (L12 represents the ear leaf). With a strong relationship between leaf spectral reflectance and LCC, CCC can be estimated directly by leaf spectral reflectance (mRER, rRMSE = 8.97%). Therefore, the spatio–temporal variations of LCC and leaf spectral reflectance were analyzed, and a higher accuracy CCC estimation approach that can avoid the effects of the leaf area was proposed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜新厌旧发布了新的文献求助30
刚刚
刚刚
1秒前
plan发布了新的文献求助10
1秒前
mvver发布了新的文献求助30
2秒前
烟花应助yaoyinlin采纳,获得10
3秒前
小何发布了新的文献求助10
3秒前
DDD发布了新的文献求助10
4秒前
轻风发布了新的文献求助10
4秒前
5秒前
派123发布了新的文献求助10
6秒前
6秒前
6秒前
正直尔曼完成签到,获得积分10
7秒前
Criminology34给Criminology34的求助进行了留言
8秒前
8秒前
ZXC发布了新的文献求助10
8秒前
彧辰完成签到 ,获得积分10
9秒前
10秒前
行僧发布了新的文献求助10
10秒前
Owen应助唐皮皮采纳,获得10
10秒前
明亮的冷雪完成签到,获得积分10
11秒前
勤奋一一应助111采纳,获得10
12秒前
Akim应助luckily采纳,获得10
12秒前
13秒前
英俊的铭应助喜新厌旧采纳,获得10
13秒前
我是老大应助juzi采纳,获得20
13秒前
量子星尘发布了新的文献求助10
13秒前
刘大可完成签到,获得积分10
13秒前
14秒前
扶光完成签到,获得积分10
16秒前
胡蝶发布了新的文献求助10
16秒前
清江鱼完成签到,获得积分10
17秒前
17秒前
温暖天与应助zero采纳,获得10
18秒前
行僧完成签到,获得积分10
18秒前
19秒前
19秒前
zoe发布了新的文献求助10
20秒前
爆米花应助22采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684580
求助须知:如何正确求助?哪些是违规求助? 5037579
关于积分的说明 15184614
捐赠科研通 4843828
什么是DOI,文献DOI怎么找? 2596943
邀请新用户注册赠送积分活动 1549548
关于科研通互助平台的介绍 1508057