Predicting Domain Generation Algorithms with N-Gram Models

僵尸网络 恶意软件 计算机科学 域名系统 领域(数学分析) 指挥与控制 杠杆(统计) 网络数据包 纳克 数据挖掘 网络安全 机器学习 人工智能 计算机安全 语言模型 万维网 互联网 数学分析 电信 数学
作者
ZiCheng Mu
标识
DOI:10.1109/bdicn55575.2022.00014
摘要

The botnet is a severe threat to computer networks, and the detection of botnet behaviors is an important research area of cyber security. Malware authors leverage the Domain Generation Algorithm (DGA) to generate bulks of pseudo-random domain names to connect to the Command and Control (C&C) server, which makes the detections and preventions extremely difficult. Previous work mostly defended against the DGA domains through pre-registering, sink-holeing or publishing blacklists after reverse engineering the malware. However, these approaches can be easily bypassed by malware authors. For most of the communications between the botnet and the C&C server, the first step is generally sending Domain Name System (DNS) request packets. Thus, an alternative approach was based on capturing and analyzing the DNS traffic and classifying the domains. Most of the previous work tried to cluster the domains, and these techniques involved the usage of contextual information. Thus, it takes a long time period to run the algorithms, which means these techniques can not be used in real-time detection. Compared with the traditional methods, recent methods attempt to predict whether the domain is DGA generated based solely on the domain name string. Nevertheless, these methods involved human engineered features that can be readily circumvented by the attackers. In this paper, we proposed a method that extracts the linguistic features as well as applies machine learning algorithms to classify the domain name. To verify the performance of the proposed method, we designed and implemented a botnet detection system, and trained and tested the model with real data. The results demonstrate that the proposed method is able to capture the suspicious packets and accurately classify the domains. We evaluated our system with real traffic, it can correctly classify the DGA domains in 95% of the cases. Furthermore, when detecting unknown DGA domains, our system achieved a 88.5% accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫猫小队长完成签到 ,获得积分10
刚刚
辛勤的大雁完成签到,获得积分10
刚刚
Ariesfei发布了新的文献求助10
1秒前
1秒前
智海瑞完成签到,获得积分10
2秒前
白白白完成签到 ,获得积分10
2秒前
lizh187完成签到 ,获得积分10
2秒前
2秒前
木一发布了新的文献求助10
2秒前
2秒前
科研小白发布了新的文献求助10
3秒前
卓涵柏发布了新的文献求助30
3秒前
Crest完成签到,获得积分10
4秒前
4秒前
woo发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
温暖芷文完成签到,获得积分10
6秒前
禹hs发布了新的文献求助10
7秒前
刘强完成签到,获得积分10
7秒前
Yuanyuan发布了新的文献求助10
8秒前
8秒前
8秒前
zhou发布了新的文献求助10
8秒前
巴巴变发布了新的文献求助30
8秒前
儒雅的函发布了新的文献求助10
9秒前
安南完成签到 ,获得积分10
9秒前
充电宝应助木一采纳,获得30
10秒前
余生发布了新的文献求助10
10秒前
求求科研完成签到,获得积分10
10秒前
格拉希尔完成签到,获得积分10
10秒前
卓涵柏完成签到,获得积分10
11秒前
joy发布了新的文献求助10
11秒前
11秒前
小王同学完成签到,获得积分10
11秒前
Eliauk完成签到 ,获得积分10
11秒前
小鹿斑比完成签到,获得积分10
12秒前
Avatar完成签到,获得积分10
12秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953854
求助须知:如何正确求助?哪些是违规求助? 3499843
关于积分的说明 11096972
捐赠科研通 3230263
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869663
科研通“疑难数据库(出版商)”最低求助积分说明 801530