Freely available artificial intelligence for pelvic lymph node metastases in PSMA PET-CT that performs on par with nuclear medicine physicians

医学 淋巴结 核医学 放射科 正电子发射断层摄影术 PET-CT 医学物理学 病理
作者
Elin Trägårdh,Olof Enqvist,Johannes Ulén,Erland Hvittfeldt,Sabine Garpered,Sarah Lindgren Belal,Anders Bjartell,Lars Edenbrandt
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (10): 3412-3418 被引量:20
标识
DOI:10.1007/s00259-022-05806-9
摘要

Abstract Purpose The aim of this study was to develop and validate an artificial intelligence (AI)-based method using convolutional neural networks (CNNs) for the detection of pelvic lymph node metastases in scans obtained using [ 18 F]PSMA-1007 positron emission tomography-computed tomography (PET-CT) from patients with high-risk prostate cancer. The second goal was to make the AI-based method available to other researchers. Methods [ 18 F]PSMA PET-CT scans were collected from 211 patients. Suspected pelvic lymph node metastases were marked by three independent readers. A CNN was developed and trained on a training and validation group of 161 of the patients. The performance of the AI method and the inter-observer agreement between the three readers were assessed in a separate test group of 50 patients. Results The sensitivity of the AI method for detecting pelvic lymph node metastases was 82%, and the corresponding sensitivity for the human readers was 77% on average. The average number of false positives was 1.8 per patient. A total of 5–17 false negative lesions in the whole cohort were found, depending on which reader was used as a reference. The method is available for researchers at www.recomia.org . Conclusion This study shows that AI can obtain a sensitivity on par with that of physicians with a reasonable number of false positives. The difficulty in achieving high inter-observer sensitivity emphasizes the need for automated methods. On the road to qualifying AI tools for clinical use, independent validation is critical and allows performance to be assessed in studies from different hospitals. Therefore, we have made our AI tool freely available to other researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助zlttt采纳,获得10
2秒前
momo发布了新的文献求助10
4秒前
漫山完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
阿斗发布了新的文献求助10
8秒前
8秒前
踏实的火龙果完成签到 ,获得积分20
8秒前
健忘白完成签到,获得积分10
10秒前
ding应助liang采纳,获得30
11秒前
厉害tt完成签到,获得积分10
11秒前
11秒前
ding应助momo采纳,获得10
11秒前
在水一方应助吧啦吧啦采纳,获得10
11秒前
踏实的火龙果关注了科研通微信公众号
12秒前
维尼发布了新的文献求助20
13秒前
文档发布了新的文献求助10
13秒前
Rondab应助千余采纳,获得10
17秒前
17秒前
taowang发布了新的文献求助30
17秒前
一支笔画天下完成签到 ,获得积分10
17秒前
18秒前
CL完成签到 ,获得积分10
19秒前
hnlgdx完成签到,获得积分20
19秒前
Dotson发布了新的文献求助20
19秒前
出门见喜发布了新的文献求助10
21秒前
丁老三完成签到 ,获得积分10
22秒前
gky完成签到,获得积分10
23秒前
25秒前
嘻哈完成签到,获得积分10
26秒前
火力全开发布了新的文献求助10
27秒前
taowang完成签到,获得积分10
31秒前
地表飞猪应助科研通管家采纳,获得10
31秒前
研友_VZG7GZ应助科研通管家采纳,获得10
31秒前
嘿小黑应助科研通管家采纳,获得30
31秒前
天天快乐应助科研通管家采纳,获得10
31秒前
脑洞疼应助科研通管家采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158