Freely available artificial intelligence for pelvic lymph node metastases in PSMA PET-CT that performs on par with nuclear medicine physicians

医学 淋巴结 核医学 放射科 正电子发射断层摄影术 PET-CT 医学物理学 病理
作者
Elin Trägårdh,Olof Enqvist,Johannes Ulén,Erland Hvittfeldt,Sabine Garpered,Sarah Lindgren Belal,Anders Bjartell,Lars Edenbrandt
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:49 (10): 3412-3418 被引量:20
标识
DOI:10.1007/s00259-022-05806-9
摘要

Abstract Purpose The aim of this study was to develop and validate an artificial intelligence (AI)-based method using convolutional neural networks (CNNs) for the detection of pelvic lymph node metastases in scans obtained using [ 18 F]PSMA-1007 positron emission tomography-computed tomography (PET-CT) from patients with high-risk prostate cancer. The second goal was to make the AI-based method available to other researchers. Methods [ 18 F]PSMA PET-CT scans were collected from 211 patients. Suspected pelvic lymph node metastases were marked by three independent readers. A CNN was developed and trained on a training and validation group of 161 of the patients. The performance of the AI method and the inter-observer agreement between the three readers were assessed in a separate test group of 50 patients. Results The sensitivity of the AI method for detecting pelvic lymph node metastases was 82%, and the corresponding sensitivity for the human readers was 77% on average. The average number of false positives was 1.8 per patient. A total of 5–17 false negative lesions in the whole cohort were found, depending on which reader was used as a reference. The method is available for researchers at www.recomia.org . Conclusion This study shows that AI can obtain a sensitivity on par with that of physicians with a reasonable number of false positives. The difficulty in achieving high inter-observer sensitivity emphasizes the need for automated methods. On the road to qualifying AI tools for clinical use, independent validation is critical and allows performance to be assessed in studies from different hospitals. Therefore, we have made our AI tool freely available to other researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
贝塔完成签到,获得积分10
1秒前
Owen应助BEIBEI采纳,获得10
1秒前
1秒前
研友_892kOL发布了新的文献求助30
1秒前
x1981发布了新的文献求助10
2秒前
FBI911应助111采纳,获得10
2秒前
腼腆的武发布了新的文献求助10
2秒前
3秒前
3秒前
香菇不可爱完成签到,获得积分20
3秒前
3秒前
XWY发布了新的文献求助10
4秒前
566发布了新的文献求助10
4秒前
4秒前
英姑应助八八九九九1采纳,获得10
5秒前
5秒前
丹参酮发布了新的文献求助20
5秒前
5秒前
hdy331完成签到,获得积分10
6秒前
6秒前
xy820完成签到,获得积分10
6秒前
Akim应助懦弱的愚志采纳,获得10
6秒前
987发布了新的文献求助20
7秒前
yyd关注了科研通微信公众号
7秒前
7秒前
一杯双皮奶完成签到,获得积分10
7秒前
英姑应助gaterina采纳,获得30
7秒前
Regina完成签到,获得积分10
8秒前
8秒前
光亮向南完成签到 ,获得积分10
8秒前
ly完成签到 ,获得积分10
9秒前
xy820发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
Grace发布了新的文献求助10
10秒前
凝聚态阿隅完成签到,获得积分10
10秒前
one完成签到 ,获得积分10
10秒前
beihaidongli发布了新的文献求助30
10秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488153
求助须知:如何正确求助?哪些是违规求助? 3075945
关于积分的说明 9142731
捐赠科研通 2768153
什么是DOI,文献DOI怎么找? 1519077
邀请新用户注册赠送积分活动 703495
科研通“疑难数据库(出版商)”最低求助积分说明 701922