亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Freely available artificial intelligence for pelvic lymph node metastases in PSMA PET-CT that performs on par with nuclear medicine physicians

医学 淋巴结 核医学 放射科 正电子发射断层摄影术 PET-CT 医学物理学 病理
作者
Elin Trägårdh,Olof Enqvist,Johannes Ulén,Erland Hvittfeldt,Sabine Garpered,Sarah Lindgren Belal,Anders Bjartell,Lars Edenbrandt
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (10): 3412-3418 被引量:20
标识
DOI:10.1007/s00259-022-05806-9
摘要

Abstract Purpose The aim of this study was to develop and validate an artificial intelligence (AI)-based method using convolutional neural networks (CNNs) for the detection of pelvic lymph node metastases in scans obtained using [ 18 F]PSMA-1007 positron emission tomography-computed tomography (PET-CT) from patients with high-risk prostate cancer. The second goal was to make the AI-based method available to other researchers. Methods [ 18 F]PSMA PET-CT scans were collected from 211 patients. Suspected pelvic lymph node metastases were marked by three independent readers. A CNN was developed and trained on a training and validation group of 161 of the patients. The performance of the AI method and the inter-observer agreement between the three readers were assessed in a separate test group of 50 patients. Results The sensitivity of the AI method for detecting pelvic lymph node metastases was 82%, and the corresponding sensitivity for the human readers was 77% on average. The average number of false positives was 1.8 per patient. A total of 5–17 false negative lesions in the whole cohort were found, depending on which reader was used as a reference. The method is available for researchers at www.recomia.org . Conclusion This study shows that AI can obtain a sensitivity on par with that of physicians with a reasonable number of false positives. The difficulty in achieving high inter-observer sensitivity emphasizes the need for automated methods. On the road to qualifying AI tools for clinical use, independent validation is critical and allows performance to be assessed in studies from different hospitals. Therefore, we have made our AI tool freely available to other researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谷千千完成签到,获得积分10
13秒前
33秒前
jyy发布了新的文献求助10
47秒前
49秒前
49秒前
量子星尘发布了新的文献求助10
58秒前
Shuo应助科研通管家采纳,获得20
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
1分钟前
文艺易蓉发布了新的文献求助10
1分钟前
小蘑菇应助文艺易蓉采纳,获得10
1分钟前
调皮醉波完成签到 ,获得积分10
1分钟前
1分钟前
XiaoLiu完成签到,获得积分10
2分钟前
2分钟前
Dreamer.发布了新的文献求助10
2分钟前
充电宝应助Xinying采纳,获得10
2分钟前
2分钟前
Hvginn完成签到,获得积分10
2分钟前
2分钟前
sc发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
Shuo应助科研通管家采纳,获得20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Shuo应助科研通管家采纳,获得20
3分钟前
zwang688完成签到,获得积分10
3分钟前
负责的书兰完成签到 ,获得积分20
3分钟前
Ava应助jyy采纳,获得10
3分钟前
3分钟前
3分钟前
ygl0217发布了新的文献求助10
3分钟前
3分钟前
ygl0217完成签到,获得积分10
3分钟前
null应助星沐易采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
jyy发布了新的文献求助10
5分钟前
Shuo应助科研通管家采纳,获得20
5分钟前
sc发布了新的文献求助10
5分钟前
Lucas应助sc采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595916
求助须知:如何正确求助?哪些是违规求助? 4008099
关于积分的说明 12408842
捐赠科研通 3686911
什么是DOI,文献DOI怎么找? 2032113
邀请新用户注册赠送积分活动 1065358
科研通“疑难数据库(出版商)”最低求助积分说明 950695