Freely available artificial intelligence for pelvic lymph node metastases in PSMA PET-CT that performs on par with nuclear medicine physicians

医学 淋巴结 核医学 放射科 正电子发射断层摄影术 PET-CT 医学物理学 病理
作者
Elin Trägårdh,Olof Enqvist,Johannes Ulén,Erland Hvittfeldt,Sabine Garpered,Sarah Lindgren Belal,Anders Bjartell,Lars Edenbrandt
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:49 (10): 3412-3418 被引量:26
标识
DOI:10.1007/s00259-022-05806-9
摘要

Abstract Purpose The aim of this study was to develop and validate an artificial intelligence (AI)-based method using convolutional neural networks (CNNs) for the detection of pelvic lymph node metastases in scans obtained using [ 18 F]PSMA-1007 positron emission tomography-computed tomography (PET-CT) from patients with high-risk prostate cancer. The second goal was to make the AI-based method available to other researchers. Methods [ 18 F]PSMA PET-CT scans were collected from 211 patients. Suspected pelvic lymph node metastases were marked by three independent readers. A CNN was developed and trained on a training and validation group of 161 of the patients. The performance of the AI method and the inter-observer agreement between the three readers were assessed in a separate test group of 50 patients. Results The sensitivity of the AI method for detecting pelvic lymph node metastases was 82%, and the corresponding sensitivity for the human readers was 77% on average. The average number of false positives was 1.8 per patient. A total of 5–17 false negative lesions in the whole cohort were found, depending on which reader was used as a reference. The method is available for researchers at www.recomia.org . Conclusion This study shows that AI can obtain a sensitivity on par with that of physicians with a reasonable number of false positives. The difficulty in achieving high inter-observer sensitivity emphasizes the need for automated methods. On the road to qualifying AI tools for clinical use, independent validation is critical and allows performance to be assessed in studies from different hospitals. Therefore, we have made our AI tool freely available to other researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖糖糖唐完成签到,获得积分10
2秒前
百草园完成签到,获得积分10
4秒前
cc完成签到,获得积分10
8秒前
武映易完成签到 ,获得积分0
11秒前
科研通AI6.1应助Zhjie126采纳,获得10
22秒前
起司头棕酷酷完成签到 ,获得积分10
31秒前
兔兔不睡觉完成签到 ,获得积分10
32秒前
39秒前
为你钟情完成签到 ,获得积分10
42秒前
43秒前
46秒前
Ps发布了新的文献求助10
47秒前
今天的云也很好看完成签到 ,获得积分10
50秒前
千空发布了新的文献求助10
51秒前
Zhjie126发布了新的文献求助10
53秒前
所所应助Ps采纳,获得10
54秒前
舒心的雍发布了新的文献求助10
57秒前
59秒前
59秒前
59秒前
59秒前
59秒前
59秒前
59秒前
59秒前
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
pluto应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得100
1分钟前
SPARK应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
Mic应助科研通管家采纳,获得10
1分钟前
ysxxx完成签到,获得积分10
1分钟前
单薄茗完成签到,获得积分10
1分钟前
珏珏_不是玉玉完成签到 ,获得积分10
1分钟前
翁瑞婷完成签到 ,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851942
求助须知:如何正确求助?哪些是违规求助? 6274706
关于积分的说明 15627471
捐赠科研通 4967879
什么是DOI,文献DOI怎么找? 2678818
邀请新用户注册赠送积分活动 1623007
关于科研通互助平台的介绍 1579466