Freely available artificial intelligence for pelvic lymph node metastases in PSMA PET-CT that performs on par with nuclear medicine physicians

医学 淋巴结 核医学 放射科 正电子发射断层摄影术 PET-CT 医学物理学 病理
作者
Elin Trägårdh,Olof Enqvist,Johannes Ulén,Erland Hvittfeldt,Sabine Garpered,Sarah Lindgren Belal,Anders Bjartell,Lars Edenbrandt
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (10): 3412-3418 被引量:20
标识
DOI:10.1007/s00259-022-05806-9
摘要

Abstract Purpose The aim of this study was to develop and validate an artificial intelligence (AI)-based method using convolutional neural networks (CNNs) for the detection of pelvic lymph node metastases in scans obtained using [ 18 F]PSMA-1007 positron emission tomography-computed tomography (PET-CT) from patients with high-risk prostate cancer. The second goal was to make the AI-based method available to other researchers. Methods [ 18 F]PSMA PET-CT scans were collected from 211 patients. Suspected pelvic lymph node metastases were marked by three independent readers. A CNN was developed and trained on a training and validation group of 161 of the patients. The performance of the AI method and the inter-observer agreement between the three readers were assessed in a separate test group of 50 patients. Results The sensitivity of the AI method for detecting pelvic lymph node metastases was 82%, and the corresponding sensitivity for the human readers was 77% on average. The average number of false positives was 1.8 per patient. A total of 5–17 false negative lesions in the whole cohort were found, depending on which reader was used as a reference. The method is available for researchers at www.recomia.org . Conclusion This study shows that AI can obtain a sensitivity on par with that of physicians with a reasonable number of false positives. The difficulty in achieving high inter-observer sensitivity emphasizes the need for automated methods. On the road to qualifying AI tools for clinical use, independent validation is critical and allows performance to be assessed in studies from different hospitals. Therefore, we have made our AI tool freely available to other researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝贝完成签到 ,获得积分10
2秒前
Lrcx完成签到 ,获得积分10
3秒前
Wen完成签到 ,获得积分10
4秒前
盘尼西林完成签到 ,获得积分10
6秒前
LOVE0077完成签到,获得积分10
9秒前
zhao完成签到,获得积分10
11秒前
BINBIN完成签到 ,获得积分10
21秒前
ambrose37完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
29秒前
fufufu123完成签到 ,获得积分10
33秒前
开心的大娘完成签到,获得积分10
33秒前
www完成签到 ,获得积分10
35秒前
末末完成签到 ,获得积分10
45秒前
无为完成签到 ,获得积分10
46秒前
白嫖论文完成签到 ,获得积分10
48秒前
上官若男应助忧伤的步美采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
54秒前
从心随缘完成签到 ,获得积分10
55秒前
花花发布了新的文献求助10
57秒前
牛奶面包完成签到 ,获得积分10
58秒前
59秒前
岁月如歌完成签到 ,获得积分0
59秒前
1分钟前
Li完成签到,获得积分10
1分钟前
张琨完成签到 ,获得积分10
1分钟前
1分钟前
sunnyqqz完成签到,获得积分10
1分钟前
热情的乘风完成签到,获得积分20
1分钟前
1分钟前
霍凡白完成签到,获得积分10
1分钟前
1分钟前
Feng发布了新的文献求助20
1分钟前
怕孤单的若颜完成签到 ,获得积分10
1分钟前
1分钟前
ruochenzu发布了新的文献求助10
1分钟前
zhongu发布了新的文献求助10
1分钟前
阳光彩虹小白马完成签到 ,获得积分10
1分钟前
Feng完成签到,获得积分10
1分钟前
花花完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022