稳健性(进化)
算法
计算机科学
噪音(视频)
递归最小平方滤波器
自适应滤波器
人工智能
生物化学
基因
图像(数学)
化学
作者
Yi Yu,Lu Lu,Yuriy Zakharov,Rodrigo C. de Lamare,Badong Chen
出处
期刊:IEEE Signal Processing Letters
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:29: 1037-1041
被引量:8
标识
DOI:10.1109/lsp.2022.3166395
摘要
This paper proposes a unified sparsity-aware robust recursive least-squares RLS (S-RRLS) algorithm for the identification of sparse systems under impulsive noise. The proposed algorithm generalizes multiple algorithms only by replacing the specified criterion of robustness and sparsity-aware penalty. Furthermore, by jointly optimizing the forgetting factor and the sparsity penalty parameter, we develop the jointly-optimized S-RRLS (JO-S-RRLS) algorithm, which not only exhibits low misadjustment but also can track well sudden changes of a sparse system. Simulations in impulsive noise scenarios demonstrate that the proposed S-RRLS and JO-S-RRLS algorithms outperform existing techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI