Gathering Information Before Negotiation

谈判 微观经济学 议价能力 随机博弈 完整信息 价值(数学) 激励 交易成本 经济 稳健性(进化) 数据库事务 业务 计算机科学 生物化学 基因 政治学 机器学习 化学 程序设计语言 法学
作者
Liang Guo
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (1): 200-219 被引量:8
标识
DOI:10.1287/mnsc.2022.4360
摘要

Uncertainty may exist about the desirability of trade in bilateral bargaining. For instance, buyers may not know their value perfectly and sellers may not be fully aware of their cost structure. We endogenize the expected surplus of trade by considering information gathering before price negotiation between a seller and a buyer. We show that prebargaining information acquisition can reverse standard findings in canonical bargaining models, regarding how the bargaining primitives may influence the equilibrium expected payoffs and the negotiated price. In particular, a higher bargaining power can result in a lower expected payoff, because the other party’s reduced incentive to acquire information would reduce the total pie to be split between the parties. In the same vein, the seller’s expected payoff can decrease as its material cost becomes lower or its outside option improves, and the buyer can be hurt by a higher value from the transaction or from its outside option. Similarly, the seller/buyer may become worse off by having more information if that induces the counter party to acquire less information. In addition, the expected negotiated price may decrease with the seller’s relative bargaining power, its material/opportunity cost, or the buyer’s incremental value. We also examine the robustness of the basic results under joint information acquisition or noncredible communication. Moreover, we show that a shopping intermediary may prefer to decrease the seller’s bargaining power or increase the buyer’s cost of gathering information. We discuss how our findings can shed light on practice and empirical research. This paper was accepted by Dmitri Kuksov, marketing. Funding: This workwas supported by Hong Kong RGC [DAG Grant].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助HelloKun采纳,获得10
刚刚
yar应助candy采纳,获得10
1秒前
hanabi完成签到,获得积分10
1秒前
李爱国应助Heartlark采纳,获得10
1秒前
1秒前
CodeCraft应助大菊采纳,获得10
2秒前
2秒前
乔哥儿发布了新的文献求助10
4秒前
王几几完成签到,获得积分10
4秒前
淡淡代玉发布了新的文献求助10
4秒前
yu发布了新的文献求助10
4秒前
4秒前
6秒前
6秒前
joseph应助半糖糖采纳,获得10
7秒前
席松发布了新的文献求助10
7秒前
乐乐应助欧欧拉格朗日采纳,获得10
7秒前
小L发布了新的文献求助10
8秒前
王几几发布了新的文献求助10
9秒前
zhouz完成签到,获得积分10
9秒前
星渊完成签到,获得积分10
11秒前
12秒前
13秒前
慢羊羊发布了新的文献求助10
13秒前
CipherSage应助yuany采纳,获得10
14秒前
Janisa完成签到,获得积分10
15秒前
cczltdy完成签到,获得积分10
16秒前
宋66发布了新的文献求助20
18秒前
hiyuz完成签到,获得积分10
18秒前
hhh完成签到 ,获得积分10
19秒前
归尘应助欧欧拉格朗日采纳,获得10
20秒前
席松完成签到,获得积分10
21秒前
卡卡西应助失忆的蝴蝶采纳,获得20
21秒前
water应助zheng能量采纳,获得10
23秒前
26秒前
英俊的铭应助hiyuz采纳,获得10
27秒前
28秒前
yuany发布了新的文献求助10
29秒前
乔乔兔应助严艾采纳,获得20
30秒前
abc发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969917
求助须知:如何正确求助?哪些是违规求助? 3514626
关于积分的说明 11175060
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795165
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891