Gathering Information Before Negotiation

谈判 微观经济学 议价能力 随机博弈 完整信息 价值(数学) 激励 交易成本 经济 稳健性(进化) 数据库事务 业务 计算机科学 生物化学 化学 程序设计语言 机器学习 政治学 法学 基因
作者
Liang Guo
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (1): 200-219 被引量:8
标识
DOI:10.1287/mnsc.2022.4360
摘要

Uncertainty may exist about the desirability of trade in bilateral bargaining. For instance, buyers may not know their value perfectly and sellers may not be fully aware of their cost structure. We endogenize the expected surplus of trade by considering information gathering before price negotiation between a seller and a buyer. We show that prebargaining information acquisition can reverse standard findings in canonical bargaining models, regarding how the bargaining primitives may influence the equilibrium expected payoffs and the negotiated price. In particular, a higher bargaining power can result in a lower expected payoff, because the other party’s reduced incentive to acquire information would reduce the total pie to be split between the parties. In the same vein, the seller’s expected payoff can decrease as its material cost becomes lower or its outside option improves, and the buyer can be hurt by a higher value from the transaction or from its outside option. Similarly, the seller/buyer may become worse off by having more information if that induces the counter party to acquire less information. In addition, the expected negotiated price may decrease with the seller’s relative bargaining power, its material/opportunity cost, or the buyer’s incremental value. We also examine the robustness of the basic results under joint information acquisition or noncredible communication. Moreover, we show that a shopping intermediary may prefer to decrease the seller’s bargaining power or increase the buyer’s cost of gathering information. We discuss how our findings can shed light on practice and empirical research. This paper was accepted by Dmitri Kuksov, marketing. Funding: This workwas supported by Hong Kong RGC [DAG Grant].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ahengo完成签到,获得积分10
1秒前
mucheng发布了新的文献求助10
1秒前
1秒前
小姜发布了新的文献求助10
2秒前
3秒前
小野菌发布了新的文献求助10
3秒前
3秒前
4秒前
Akim应助研友_LaOrMZ采纳,获得10
5秒前
zzzxxx发布了新的文献求助10
6秒前
许晓蝶完成签到,获得积分10
6秒前
天天快乐应助Tigher采纳,获得10
7秒前
合适的龙猫完成签到,获得积分10
8秒前
9秒前
zhu发布了新的文献求助10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
12秒前
12秒前
乌云乌云快走开完成签到,获得积分10
13秒前
Elijah应助机灵的悒采纳,获得10
13秒前
14秒前
上官若男应助华鹰采纳,获得10
14秒前
brossica发布了新的文献求助10
14秒前
15秒前
可爱的函函应助zt1812431172采纳,获得50
15秒前
zzzxxx完成签到,获得积分10
15秒前
leslie完成签到,获得积分10
17秒前
GYX完成签到 ,获得积分10
17秒前
19秒前
DoggyBadiou完成签到,获得积分20
19秒前
柠檬茶完成签到 ,获得积分10
20秒前
拖拉机完成签到 ,获得积分10
21秒前
调研昵称发布了新的文献求助10
22秒前
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260352
求助须知:如何正确求助?哪些是违规求助? 2901579
关于积分的说明 8316158
捐赠科研通 2571164
什么是DOI,文献DOI怎么找? 1396847
科研通“疑难数据库(出版商)”最低求助积分说明 653584
邀请新用户注册赠送积分活动 632008