Gathering Information Before Negotiation

谈判 微观经济学 议价能力 随机博弈 完整信息 价值(数学) 激励 交易成本 经济 稳健性(进化) 数据库事务 业务 计算机科学 生物化学 基因 政治学 机器学习 化学 程序设计语言 法学
作者
Liang Guo
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (1): 200-219 被引量:10
标识
DOI:10.1287/mnsc.2022.4360
摘要

Uncertainty may exist about the desirability of trade in bilateral bargaining. For instance, buyers may not know their value perfectly and sellers may not be fully aware of their cost structure. We endogenize the expected surplus of trade by considering information gathering before price negotiation between a seller and a buyer. We show that prebargaining information acquisition can reverse standard findings in canonical bargaining models, regarding how the bargaining primitives may influence the equilibrium expected payoffs and the negotiated price. In particular, a higher bargaining power can result in a lower expected payoff, because the other party’s reduced incentive to acquire information would reduce the total pie to be split between the parties. In the same vein, the seller’s expected payoff can decrease as its material cost becomes lower or its outside option improves, and the buyer can be hurt by a higher value from the transaction or from its outside option. Similarly, the seller/buyer may become worse off by having more information if that induces the counter party to acquire less information. In addition, the expected negotiated price may decrease with the seller’s relative bargaining power, its material/opportunity cost, or the buyer’s incremental value. We also examine the robustness of the basic results under joint information acquisition or noncredible communication. Moreover, we show that a shopping intermediary may prefer to decrease the seller’s bargaining power or increase the buyer’s cost of gathering information. We discuss how our findings can shed light on practice and empirical research. This paper was accepted by Dmitri Kuksov, marketing. Funding: This workwas supported by Hong Kong RGC [DAG Grant].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
俏皮的宛宛完成签到,获得积分10
1秒前
拼搏的韭菜完成签到,获得积分20
3秒前
啦啦啦发布了新的文献求助10
3秒前
3秒前
郗关塚发布了新的文献求助10
4秒前
浮游应助默默的微笑采纳,获得10
4秒前
yuhan发布了新的文献求助30
4秒前
Orange应助令狐煜祺采纳,获得10
5秒前
5秒前
5秒前
共享精神应助内向含桃采纳,获得10
6秒前
6秒前
7秒前
领导范儿应助啦啦啦采纳,获得10
8秒前
9秒前
彭于晏应助吭哧吭哧采纳,获得10
9秒前
Libra完成签到,获得积分20
10秒前
十四季白发布了新的文献求助10
10秒前
在水一方应助spring采纳,获得10
10秒前
小马甲应助suise采纳,获得10
10秒前
10秒前
顾矜应助种喜欢的花采纳,获得10
10秒前
策略发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
swslgd完成签到,获得积分10
12秒前
13秒前
华仔应助郗关塚采纳,获得10
13秒前
bjcyqz发布了新的文献求助10
14秒前
兜兜完成签到,获得积分10
14秒前
默默的微笑完成签到,获得积分10
15秒前
惑梦梦完成签到,获得积分10
15秒前
CodeCraft应助下课闹闹采纳,获得10
15秒前
Song发布了新的文献求助10
16秒前
噜啦啦发布了新的文献求助10
17秒前
yyzhou应助PhDL1采纳,获得20
17秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950123
求助须知:如何正确求助?哪些是违规求助? 4213072
关于积分的说明 13102608
捐赠科研通 3994857
什么是DOI,文献DOI怎么找? 2186618
邀请新用户注册赠送积分活动 1201904
关于科研通互助平台的介绍 1115269