An enhance multimodal multiobjective optimization genetic algorithm with special crowding distance for pulmonary hypertension feature selection

渡线 多目标优化 数学优化 计算机科学 帕累托原理 遗传算法 特征(语言学) 进化算法 选择(遗传算法) 趋同(经济学) 算法 数学 人工智能 经济增长 哲学 语言学 经济
作者
Mingjing Wang,Xiaoping Li,Long Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:146: 105536-105536 被引量:24
标识
DOI:10.1016/j.compbiomed.2022.105536
摘要

Multiobjective optimization assumes a one-to-one mapping between decisions and objective space, however, this is not always the case. When many variables have the same or equivalent objective value, a multimodal multiobjective issue develops in which more than one Pareto Set (PS) maps to the same Pareto Front (PF). Evolutionary computing research into multimodal multiobjective optimization issues has increased (MMOPs). This paper proposed an enhanced multimodal multiobjective genetic algorithm to crack MMOPs using a special crowding distance calculation (ESNSGA-II). This special crowding distance calculation can consider the diversity of the decision space while paying attention to the diversity of the object space. Then, a unique crossover mechanism is established by combining the simulated binary crossover (SBX) method with the capacity of Pareto solutions to generate offspring solutions. The balance between convergence and diversity in both decision space and object space can be guaranteed synchronously, and PS distribution and PF accuracy may both be enhanced. The proposed ESNSGA-II uses the CEC2020 benchmarks MMF1-MMF8 to assess its properties. Comparing the ESNSGA-II to other recently established multimodal multiobjective evolutionary techniques demonstrates that it is capable of efficiently searching numerous PSs of MMOPs. Finally, the suggested ESNSGA-II is used to address a real MMOP problem of pulmonary hypertension detection via arterial blood gas analysis. The statistical analysis reveals that the suggested ESNSGA-II algorithm outperforms other algorithms on this MMOP, and so may be considered a possible tool for pulmonary hypertension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千夜发布了新的文献求助30
1秒前
李茶嘚发布了新的文献求助10
1秒前
Racheal发布了新的文献求助10
2秒前
2秒前
2秒前
顾矜应助beyondjun采纳,获得10
2秒前
2秒前
wangrswjx完成签到,获得积分10
3秒前
忍冬完成签到,获得积分10
3秒前
赫连立果完成签到,获得积分10
3秒前
4秒前
LaTeXer应助honphin采纳,获得50
4秒前
Amai发布了新的文献求助10
4秒前
研友_VZG7GZ应助王九八采纳,获得10
5秒前
Sunflower发布了新的文献求助10
5秒前
zeee完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
Ava应助77采纳,获得10
9秒前
茜你亦首歌完成签到,获得积分10
9秒前
科研通AI2S应助Racheal采纳,获得10
9秒前
博弈春秋完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
Sarah悦发布了新的文献求助10
11秒前
陈淑玲完成签到,获得积分10
11秒前
未来可期完成签到,获得积分10
11秒前
wangrswjx发布了新的文献求助10
11秒前
抱抱番薯发布了新的文献求助10
12秒前
12秒前
蔓越莓麻薯完成签到 ,获得积分10
12秒前
13秒前
韩凡发布了新的文献求助10
13秒前
隐形曼青应助lanyun00123采纳,获得10
13秒前
巴乔完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961980
求助须知:如何正确求助?哪些是违规求助? 3508280
关于积分的说明 11140173
捐赠科研通 3240897
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352