FDA-regulated AI Algorithms: Trends, Strengths, and Gaps of Validation Studies

人工智能 算法 机器学习 急诊分诊台 计算机科学 接收机工作特性 子专业 医学 病理 急诊医学
作者
Shadi Ebrahimian,Mannudeep K. Kalra,Sheela Agarwal,Bernardo C. Bizzo,Mona Elkholy,Christoph Wald,Bibb Allen,Keith J. Dreyer
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (4): 559-566 被引量:76
标识
DOI:10.1016/j.acra.2021.09.002
摘要

To assess key trends, strengths, and gaps in validation studies of the Food and Drug Administration (FDA)-regulated imaging-based artificial intelligence/machine learning (AI/ML) algorithms.We audited publicly available details of regulated AI/ML algorithms in imaging from 2008 until April 2021. We reviewed 127 regulated software (118 AI/ML) to classify information related to their parent company, subspecialty, body area and specific anatomy type, imaging modality, date of FDA clearance, indications for use, target pathology (such as trauma) and findings (such as fracture), technique (CAD triage, CAD detection and/or characterization, CAD acquisition or improvement, and image processing/quantification), product performance, presence, type, strength and availability of clinical validation data. Pertaining to validation data, where available, we recorded the number of patients or studies included, sensitivity, specificity, accuracy, and/or receiver operating characteristic area under the curve, along with information on ground-truthing of use-cases. Data were analyzed with pivot tables and charts for descriptive statistics and trends.We noted an increasing number of FDA-regulated AI/ML from 2008 to 2021. Seventeen (17/118) regulated AI/ML algorithms posted no validation claims or data. Just 9/118 reviewed AI/ML algorithms had a validation dataset sizes of over 1000 patients. The most common type of AI/ML included image processing/quantification (IPQ; n = 59/118), and triage (CADt; n = 27/118). Brain, breast, and lungs dominated the targeted body regions of interest.Insufficient public information on validation datasets in several FDA-regulated AI/ML algorithms makes it difficult to justify clinical applications since their generalizability and presence of bias cannot be inferred.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瑞_完成签到,获得积分10
刚刚
刚刚
菜菜发布了新的文献求助30
1秒前
BDH发布了新的文献求助10
1秒前
ppf发布了新的文献求助10
1秒前
Gaojinyun发布了新的文献求助30
1秒前
方知发布了新的文献求助30
2秒前
林珍完成签到,获得积分10
2秒前
2秒前
小吕完成签到,获得积分10
4秒前
qgyj完成签到,获得积分10
4秒前
丘比特应助Jes采纳,获得30
5秒前
田様应助香菜头采纳,获得10
5秒前
情怀应助皮咻采纳,获得10
5秒前
6秒前
6秒前
QX发布了新的文献求助10
7秒前
含蓄半邪完成签到,获得积分10
7秒前
7秒前
烟花应助一叶扁舟采纳,获得10
8秒前
xzy998应助cij123采纳,获得10
8秒前
8秒前
科研通AI2S应助自然的雁蓉采纳,获得20
9秒前
含蓄半邪发布了新的文献求助10
10秒前
尺素寸心发布了新的文献求助10
11秒前
刺猬完成签到,获得积分10
11秒前
12秒前
昭蘅发布了新的文献求助10
13秒前
13秒前
朴实曼岚发布了新的文献求助10
13秒前
ppf完成签到,获得积分20
13秒前
Tangshy发布了新的文献求助30
14秒前
XiaoDai完成签到,获得积分10
15秒前
mint完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
zhou_发布了新的文献求助10
16秒前
gfhdf完成签到,获得积分10
16秒前
现实的依凝完成签到,获得积分20
16秒前
隐形曼青应助chie采纳,获得10
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715