FDA-regulated AI Algorithms: Trends, Strengths, and Gaps of Validation Studies

人工智能 算法 机器学习 急诊分诊台 计算机科学 接收机工作特性 子专业 医学 病理 急诊医学
作者
Shadi Ebrahimian,Mannudeep K. Kalra,Sheela Agarwal,Bernardo C. Bizzo,Mona Elkholy,Christoph Wald,Bibb Allen,Keith J. Dreyer
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (4): 559-566 被引量:76
标识
DOI:10.1016/j.acra.2021.09.002
摘要

To assess key trends, strengths, and gaps in validation studies of the Food and Drug Administration (FDA)-regulated imaging-based artificial intelligence/machine learning (AI/ML) algorithms.We audited publicly available details of regulated AI/ML algorithms in imaging from 2008 until April 2021. We reviewed 127 regulated software (118 AI/ML) to classify information related to their parent company, subspecialty, body area and specific anatomy type, imaging modality, date of FDA clearance, indications for use, target pathology (such as trauma) and findings (such as fracture), technique (CAD triage, CAD detection and/or characterization, CAD acquisition or improvement, and image processing/quantification), product performance, presence, type, strength and availability of clinical validation data. Pertaining to validation data, where available, we recorded the number of patients or studies included, sensitivity, specificity, accuracy, and/or receiver operating characteristic area under the curve, along with information on ground-truthing of use-cases. Data were analyzed with pivot tables and charts for descriptive statistics and trends.We noted an increasing number of FDA-regulated AI/ML from 2008 to 2021. Seventeen (17/118) regulated AI/ML algorithms posted no validation claims or data. Just 9/118 reviewed AI/ML algorithms had a validation dataset sizes of over 1000 patients. The most common type of AI/ML included image processing/quantification (IPQ; n = 59/118), and triage (CADt; n = 27/118). Brain, breast, and lungs dominated the targeted body regions of interest.Insufficient public information on validation datasets in several FDA-regulated AI/ML algorithms makes it difficult to justify clinical applications since their generalizability and presence of bias cannot be inferred.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助开心采纳,获得10
3秒前
大芳儿发布了新的文献求助10
4秒前
Xjx6519发布了新的文献求助10
4秒前
浮游应助明亮紫易采纳,获得10
4秒前
6秒前
Tcell完成签到,获得积分10
11秒前
胡图图发布了新的文献求助10
11秒前
无极微光应助科研通管家采纳,获得20
12秒前
pluto应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
shhoing应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
12秒前
玄风应助科研通管家采纳,获得10
12秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
张宇豪应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
玄风应助科研通管家采纳,获得10
13秒前
Verity应助科研通管家采纳,获得10
13秒前
厚朴应助开心采纳,获得10
14秒前
大龙哥886应助Xjx6519采纳,获得10
17秒前
在水一方应助zgsjymysmyy采纳,获得30
17秒前
echo发布了新的文献求助10
18秒前
18秒前
zhoumaoyuan发布了新的文献求助10
19秒前
天份z完成签到,获得积分10
19秒前
共享精神应助超越自我4641采纳,获得10
19秒前
25秒前
柳条儿发布了新的文献求助10
27秒前
28秒前
cx330完成签到 ,获得积分10
28秒前
优雅山柏发布了新的文献求助10
28秒前
anders完成签到 ,获得积分10
29秒前
冷艳的靳关注了科研通微信公众号
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566