FDA-regulated AI Algorithms: Trends, Strengths, and Gaps of Validation Studies

人工智能 算法 机器学习 急诊分诊台 计算机科学 接收机工作特性 子专业 医学 病理 急诊医学
作者
Shadi Ebrahimian,Mannudeep K. Kalra,Sheela Agarwal,Bernardo C. Bizzo,Mona Elkholy,Christoph Wald,Bibb Allen,Keith J. Dreyer
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (4): 559-566 被引量:76
标识
DOI:10.1016/j.acra.2021.09.002
摘要

To assess key trends, strengths, and gaps in validation studies of the Food and Drug Administration (FDA)-regulated imaging-based artificial intelligence/machine learning (AI/ML) algorithms.We audited publicly available details of regulated AI/ML algorithms in imaging from 2008 until April 2021. We reviewed 127 regulated software (118 AI/ML) to classify information related to their parent company, subspecialty, body area and specific anatomy type, imaging modality, date of FDA clearance, indications for use, target pathology (such as trauma) and findings (such as fracture), technique (CAD triage, CAD detection and/or characterization, CAD acquisition or improvement, and image processing/quantification), product performance, presence, type, strength and availability of clinical validation data. Pertaining to validation data, where available, we recorded the number of patients or studies included, sensitivity, specificity, accuracy, and/or receiver operating characteristic area under the curve, along with information on ground-truthing of use-cases. Data were analyzed with pivot tables and charts for descriptive statistics and trends.We noted an increasing number of FDA-regulated AI/ML from 2008 to 2021. Seventeen (17/118) regulated AI/ML algorithms posted no validation claims or data. Just 9/118 reviewed AI/ML algorithms had a validation dataset sizes of over 1000 patients. The most common type of AI/ML included image processing/quantification (IPQ; n = 59/118), and triage (CADt; n = 27/118). Brain, breast, and lungs dominated the targeted body regions of interest.Insufficient public information on validation datasets in several FDA-regulated AI/ML algorithms makes it difficult to justify clinical applications since their generalizability and presence of bias cannot be inferred.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangkun090121发布了新的文献求助10
刚刚
Monologue完成签到 ,获得积分10
1秒前
123456完成签到,获得积分10
2秒前
drgaoying完成签到,获得积分10
3秒前
乐乐应助yiyi采纳,获得10
3秒前
mm发布了新的文献求助10
3秒前
3秒前
3秒前
李小二发布了新的文献求助10
4秒前
洽洽瓜子shine完成签到,获得积分10
4秒前
张证彤发布了新的文献求助10
4秒前
4秒前
zh应助高天采纳,获得50
5秒前
一兜兜糖发布了新的文献求助10
5秒前
7秒前
艺术家发布了新的文献求助10
8秒前
Ryki应助木木采纳,获得10
8秒前
9秒前
核桃完成签到,获得积分10
9秒前
10秒前
sy发布了新的文献求助10
11秒前
科研通AI2S应助LY采纳,获得10
11秒前
我是老大应助美满的晓丝采纳,获得10
12秒前
12秒前
13秒前
14秒前
three完成签到,获得积分20
14秒前
张证彤完成签到,获得积分20
15秒前
小二郎应助hhh采纳,获得10
15秒前
小绵羊完成签到 ,获得积分10
16秒前
Carey发布了新的文献求助10
16秒前
所所应助纪鹏飞采纳,获得10
16秒前
完美世界应助mm采纳,获得10
17秒前
朴实寻真完成签到 ,获得积分10
17秒前
香蕉觅云应助靓丽的思真采纳,获得10
17秒前
17秒前
GK发布了新的文献求助10
18秒前
zzzzzc发布了新的文献求助30
19秒前
加油努力完成签到,获得积分20
19秒前
19秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328628
求助须知:如何正确求助?哪些是违规求助? 2958733
关于积分的说明 8591457
捐赠科研通 2637020
什么是DOI,文献DOI怎么找? 1443279
科研通“疑难数据库(出版商)”最低求助积分说明 668633
邀请新用户注册赠送积分活动 655938