FDA-regulated AI Algorithms: Trends, Strengths, and Gaps of Validation Studies

人工智能 算法 机器学习 急诊分诊台 计算机科学 接收机工作特性 子专业 医学 病理 急诊医学
作者
Shadi Ebrahimian,Mannudeep K. Kalra,Sheela Agarwal,Bernardo C. Bizzo,Mona Elkholy,Christoph Wald,Bibb Allen,Keith J. Dreyer
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29 (4): 559-566 被引量:76
标识
DOI:10.1016/j.acra.2021.09.002
摘要

To assess key trends, strengths, and gaps in validation studies of the Food and Drug Administration (FDA)-regulated imaging-based artificial intelligence/machine learning (AI/ML) algorithms.We audited publicly available details of regulated AI/ML algorithms in imaging from 2008 until April 2021. We reviewed 127 regulated software (118 AI/ML) to classify information related to their parent company, subspecialty, body area and specific anatomy type, imaging modality, date of FDA clearance, indications for use, target pathology (such as trauma) and findings (such as fracture), technique (CAD triage, CAD detection and/or characterization, CAD acquisition or improvement, and image processing/quantification), product performance, presence, type, strength and availability of clinical validation data. Pertaining to validation data, where available, we recorded the number of patients or studies included, sensitivity, specificity, accuracy, and/or receiver operating characteristic area under the curve, along with information on ground-truthing of use-cases. Data were analyzed with pivot tables and charts for descriptive statistics and trends.We noted an increasing number of FDA-regulated AI/ML from 2008 to 2021. Seventeen (17/118) regulated AI/ML algorithms posted no validation claims or data. Just 9/118 reviewed AI/ML algorithms had a validation dataset sizes of over 1000 patients. The most common type of AI/ML included image processing/quantification (IPQ; n = 59/118), and triage (CADt; n = 27/118). Brain, breast, and lungs dominated the targeted body regions of interest.Insufficient public information on validation datasets in several FDA-regulated AI/ML algorithms makes it difficult to justify clinical applications since their generalizability and presence of bias cannot be inferred.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心的七完成签到,获得积分10
刚刚
abc发布了新的文献求助10
1秒前
巧巧艾完成签到,获得积分10
2秒前
葵小葵完成签到,获得积分10
2秒前
eazin完成签到 ,获得积分10
2秒前
wxx发布了新的文献求助10
2秒前
2秒前
一叶扁舟完成签到,获得积分10
3秒前
小幸运完成签到,获得积分10
3秒前
fujun完成签到,获得积分10
3秒前
大个应助歇洛克采纳,获得10
3秒前
4秒前
www完成签到,获得积分10
4秒前
笨笨小刺猬完成签到,获得积分10
6秒前
自然的寒珊完成签到,获得积分10
6秒前
北冰石完成签到,获得积分10
7秒前
chilin完成签到,获得积分10
7秒前
zrw27发布了新的文献求助10
7秒前
8秒前
悦耳觅夏完成签到 ,获得积分10
9秒前
Jan完成签到,获得积分10
10秒前
Tough完成签到 ,获得积分10
10秒前
11秒前
Liufgui应助ljc采纳,获得10
11秒前
Lee完成签到 ,获得积分10
12秒前
歇洛克完成签到,获得积分10
12秒前
加贝火火完成签到 ,获得积分10
12秒前
12秒前
疯子魔煞发布了新的文献求助10
13秒前
QJL完成签到,获得积分10
13秒前
闪电完成签到 ,获得积分10
14秒前
14秒前
年少有你完成签到,获得积分10
14秒前
Jackson_Cai完成签到,获得积分10
15秒前
曾建完成签到 ,获得积分10
15秒前
小谭完成签到 ,获得积分10
15秒前
gffh完成签到,获得积分10
16秒前
追光者完成签到,获得积分20
16秒前
明亮随阴完成签到,获得积分10
16秒前
cTiyAmo完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027