FDA-regulated AI Algorithms: Trends, Strengths, and Gaps of Validation Studies

人工智能 算法 机器学习 急诊分诊台 计算机科学 接收机工作特性 子专业 医学 病理 急诊医学
作者
Shadi Ebrahimian,Mannudeep K. Kalra,Sheela Agarwal,Bernardo C. Bizzo,Mona Elkholy,Christoph Wald,Bibb Allen,Keith J. Dreyer
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29 (4): 559-566 被引量:76
标识
DOI:10.1016/j.acra.2021.09.002
摘要

To assess key trends, strengths, and gaps in validation studies of the Food and Drug Administration (FDA)-regulated imaging-based artificial intelligence/machine learning (AI/ML) algorithms.We audited publicly available details of regulated AI/ML algorithms in imaging from 2008 until April 2021. We reviewed 127 regulated software (118 AI/ML) to classify information related to their parent company, subspecialty, body area and specific anatomy type, imaging modality, date of FDA clearance, indications for use, target pathology (such as trauma) and findings (such as fracture), technique (CAD triage, CAD detection and/or characterization, CAD acquisition or improvement, and image processing/quantification), product performance, presence, type, strength and availability of clinical validation data. Pertaining to validation data, where available, we recorded the number of patients or studies included, sensitivity, specificity, accuracy, and/or receiver operating characteristic area under the curve, along with information on ground-truthing of use-cases. Data were analyzed with pivot tables and charts for descriptive statistics and trends.We noted an increasing number of FDA-regulated AI/ML from 2008 to 2021. Seventeen (17/118) regulated AI/ML algorithms posted no validation claims or data. Just 9/118 reviewed AI/ML algorithms had a validation dataset sizes of over 1000 patients. The most common type of AI/ML included image processing/quantification (IPQ; n = 59/118), and triage (CADt; n = 27/118). Brain, breast, and lungs dominated the targeted body regions of interest.Insufficient public information on validation datasets in several FDA-regulated AI/ML algorithms makes it difficult to justify clinical applications since their generalizability and presence of bias cannot be inferred.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蜉蝣发布了新的文献求助10
1秒前
1秒前
Ava应助枯蚀采纳,获得10
3秒前
5秒前
5秒前
JUSTDOIT发布了新的文献求助10
5秒前
6秒前
Ruyii完成签到,获得积分10
6秒前
懦弱的丹秋完成签到,获得积分10
7秒前
冯冯完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
bkppforever发布了新的文献求助10
10秒前
11秒前
lllh发布了新的文献求助10
12秒前
12秒前
开放凤完成签到,获得积分20
12秒前
且行且思完成签到,获得积分20
13秒前
充电宝应助半山听雨落采纳,获得10
13秒前
可爱的函函应助maguodrgon采纳,获得10
13秒前
不配.应助maguodrgon采纳,获得50
13秒前
15秒前
小蘑菇应助rek采纳,获得10
15秒前
浮游应助bendanzxx采纳,获得10
17秒前
yaya完成签到,获得积分10
17秒前
zzzz发布了新的文献求助10
18秒前
18秒前
赘婿应助涂仙采纳,获得10
20秒前
21秒前
21秒前
23秒前
阔达的小土豆完成签到 ,获得积分10
23秒前
24秒前
一个快乐的吃货完成签到,获得积分10
24秒前
25秒前
snowy发布了新的文献求助10
26秒前
Dan发布了新的文献求助10
26秒前
陈均涛完成签到,获得积分10
26秒前
无花果应助zheng采纳,获得10
26秒前
Whisper发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4915038
求助须知:如何正确求助?哪些是违规求助? 4189167
关于积分的说明 13010035
捐赠科研通 3958176
什么是DOI,文献DOI怎么找? 2170103
邀请新用户注册赠送积分活动 1188349
关于科研通互助平台的介绍 1096077