Fusion of binary split allosteric aptasensor for the ultra-sensitive and super-rapid detection of malachite green

适体 变构调节 孔雀绿 检出限 DNA 化学 纳米技术 计算机科学 色谱法 材料科学 生物 分子生物学 生物化学 吸附 有机化学
作者
Xu Chen,Keren Chen,Zaihui Du,Huashuo Chu,Longjiao Zhu,Xiaoyun He,Wentao Xu
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:425: 127976-127976 被引量:19
标识
DOI:10.1016/j.jhazmat.2021.127976
摘要

The complicated labeling procedure and high cost of split aptasensors have hitherto limited their application in the detection of hazardous substances. Herein we report the first examples of label-free aptasensors based on the fusion of a binary split G-quadruplex and malachite green (MG) aptamer, transducing recognition events into fluorescent signals through the allosteric regulation of the aptamer to achieve selective and sensitive detection. Specifically, RNA MGA was successfully converted into DNA MGA with comparable affinity and improved stability, thereby overcoming the limitations of poor stability and high expense. We subsequently split the DNA MGA and attached them to a G-rich DNA sequence at the 5' and 3' ends, to construct the binary split allosteric aptasensor. The performance of the binary split aptasensor for MG detection was significantly improved based on proposed allosteric regulation strategy, and the reconfiguration capability of the aptamers upon binding with targets was proven, providing the binary split aptasensor with superior sensitivity and selectivity. This sensing method has a wide dynamic detection range of 5 nmol·L-1 to 500 μmol·L-1, with a low limit of detection (LOD) of 4.17 nmol·L-1, and achieves the ultra-sensitive and super-rapid detection of MG. This newly proposed aptasensor is equipped with the advantages of being label-free, time saving and economical. More importantly, this successful construction of a fused aptasensor expands the principles of split aptasensor design and provides a universal platform for the detection of environmental contaminants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LEO完成签到,获得积分10
1秒前
1秒前
1秒前
伯赏浩天给伯赏浩天的求助进行了留言
1秒前
呵呜哎辉发布了新的文献求助10
2秒前
2秒前
2秒前
qweerrtt发布了新的文献求助10
4秒前
111完成签到 ,获得积分10
5秒前
5秒前
列奥维登发布了新的文献求助10
6秒前
笨笨芯发布了新的文献求助10
6秒前
Lucas应助李天采纳,获得10
6秒前
6秒前
安致远完成签到,获得积分20
8秒前
8秒前
瑶咕隆咚完成签到,获得积分10
9秒前
9秒前
迅速的衬衫完成签到,获得积分10
9秒前
心动完成签到,获得积分20
11秒前
共享精神应助杜阿拉阿拉采纳,获得10
11秒前
hxl发布了新的文献求助10
11秒前
yy应助苏苏采纳,获得10
13秒前
zzzzzzzzzzzzb发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
15秒前
海潮完成签到,获得积分10
16秒前
simpleblue发布了新的文献求助10
16秒前
酷波er应助lani采纳,获得10
17秒前
研友_VZG7GZ应助YJR采纳,获得10
17秒前
wddfz完成签到,获得积分10
17秒前
SciGPT应助pe采纳,获得10
18秒前
hxl完成签到,获得积分10
21秒前
科研通AI5应助badyoungboy采纳,获得10
21秒前
眼睛大的冰岚完成签到,获得积分10
21秒前
22秒前
Lucas应助zzzzzzzzzzzzb采纳,获得10
22秒前
ezekiet完成签到 ,获得积分10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835