Failure analysis of corroded high-strength pipeline subject to hydrogen damage based on FEM and GA-BP neural network

腐蚀 有限元法 材料科学 残余物 结构工程 管道(软件) 管道运输 人工神经网络 计算机科学 复合材料 环境科学 工程类 化学 算法 人工智能 有机化学 环境工程 程序设计语言
作者
Han Zhang,Zhigang Tian
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:47 (7): 4741-4758 被引量:37
标识
DOI:10.1016/j.ijhydene.2021.11.082
摘要

The pipeline is a major approach to achieving large-scale hydrogen transportation. Hydrogen damage can deteriorate the material performance of the pipe steel, like ductility and plasticity reduction. Corrosion is dominating damage that impairs a pipeline's bearing capacity and structural reliability. However, previous research barely investigated the effect of hydrogen damage on failure behaviors, residual strength and interacting effect between adjacent corrosions of corroded high-strength pipelines transporting hydrogen. Besides, hardly any burst pressure model considers hydrogen damage. In this paper, several approaches, including the finite element method (FEM), regression analysis, the orthogonal test method, and the artificial neural network method, are applied to fill the gap. First, a series of finite element models with different geometric features and hydrogen damage is established to investigate the effects of hydrogen damage and corrosion on failure behaviors and residual strength. The results show that hydrogen damage can change the corroded pipeline's failure behaviors and reduce the residual strength. Second, based on the simulation results and regression analysis, a new burst model is developed to consider the hydrogen damage and improve the estimation accuracy. Third, based on the genetic algorithm (GA), a GA-BP neural network is established and trained for accurate and efficient residual strength estimation considering hydrogen damage. Furthermore, an orthogonal test is designed and performed to investigate the effects of critical parameters on the burst pressure of the corroded pipeline after hydrogen damage. The results indicate that hydrogen damage and corrosion length have similar contributions to the residual strength. Finally, the simulation results of pipelines with multiple corrosions show that hydrogen damage has a significant impact on the interacting effect between adjacent corrosions. The results obtained are valuable for further integrity management of steel pipelines carrying hydrogen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助温柔的海安采纳,获得10
刚刚
顾矜应助结实星星采纳,获得10
1秒前
小盆呐完成签到,获得积分10
3秒前
一烟尘完成签到,获得积分10
4秒前
小巧满天完成签到 ,获得积分10
6秒前
6秒前
Hello应助wangqing采纳,获得10
7秒前
bkagyin应助cdj采纳,获得10
7秒前
zino完成签到,获得积分10
9秒前
领导范儿应助喜悦的斓采纳,获得10
11秒前
zzz完成签到 ,获得积分10
12秒前
独特的凝云完成签到 ,获得积分10
14秒前
大块完成签到 ,获得积分10
14秒前
Tempo完成签到,获得积分10
16秒前
林希希发布了新的文献求助10
17秒前
zbclzf完成签到,获得积分10
17秒前
DentistRui完成签到,获得积分10
18秒前
六月666发布了新的文献求助80
18秒前
18秒前
21秒前
22秒前
jscr发布了新的文献求助10
23秒前
车剑锋完成签到,获得积分10
24秒前
hao253完成签到,获得积分10
25秒前
虬江学者发布了新的文献求助10
26秒前
26秒前
不管啦发布了新的文献求助10
26秒前
江鹿柒柒完成签到,获得积分10
27秒前
28秒前
28秒前
fighting完成签到,获得积分10
29秒前
29秒前
乘风完成签到,获得积分10
30秒前
奶黄包完成签到 ,获得积分10
31秒前
32秒前
32秒前
虬江学者完成签到,获得积分10
32秒前
吕小布完成签到,获得积分10
33秒前
wangqing发布了新的文献求助10
33秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965870
求助须知:如何正确求助?哪些是违规求助? 3511230
关于积分的说明 11156929
捐赠科研通 3245841
什么是DOI,文献DOI怎么找? 1793144
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278