Contrastive Self-Supervised Pre-Training for Video Quality Assessment

计算机科学 人工智能 机器学习 特征学习 杠杆(统计) 任务(项目管理) 特征(语言学) 嵌入 失真(音乐) 模式识别(心理学) 放大器 计算机网络 语言学 哲学 管理 带宽(计算) 经济
作者
Pengfei Chen,Leida Li,Jinjian Wu,Weisheng Dong,Guangming Shi
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 458-471 被引量:33
标识
DOI:10.1109/tip.2021.3130536
摘要

Video quality assessment (VQA) task is an ongoing small sample learning problem due to the costly effort required for manual annotation. Since existing VQA datasets are of limited scale, prior research tries to leverage models pre-trained on ImageNet to mitigate this kind of shortage. Nonetheless, these well-trained models targeting on image classification task can be sub-optimal when applied on VQA data from a significantly different domain. In this paper, we make the first attempt to perform self-supervised pre-training for VQA task built upon contrastive learning method, targeting at exploiting the plentiful unlabeled video data to learn feature representation in a simple-yet-effective way. Specifically, we implement this idea by first generating distorted video samples with diverse distortion characteristics and visual contents based on the proposed distortion augmentation strategy. Afterwards, we conduct contrastive learning to capture quality-aware information by maximizing the agreement on feature representations of future frames and their corresponding predictions in the embedding space. In addition, we further introduce distortion prediction task as an additional learning objective to push the model towards discriminating different distortion categories of the input video. Solving these prediction tasks jointly with the contrastive learning not only provides stronger surrogate supervision signals, but also learns the shared knowledge among the prediction tasks. Extensive experiments demonstrate that our approach sets a new state-of-the-art in self-supervised learning for VQA task. Our results also underscore that the learned pre-trained model can significantly benefit the existing learning based VQA models. Source code is available at https://github.com/cpf0079/CSPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Junior发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
2秒前
qwq发布了新的文献求助30
2秒前
大海完成签到 ,获得积分10
2秒前
王秋婷发布了新的文献求助10
3秒前
科研通AI5应助cruise采纳,获得10
4秒前
hanjresearch发布了新的文献求助10
4秒前
柚子发布了新的文献求助10
4秒前
ww发布了新的文献求助10
4秒前
4秒前
demo1发布了新的文献求助10
4秒前
渐渐发布了新的文献求助10
4秒前
5秒前
5秒前
皂荚树下的桑葚完成签到,获得积分20
6秒前
徐劳板完成签到 ,获得积分10
6秒前
6秒前
圆梦完成签到,获得积分20
6秒前
axiao发布了新的文献求助10
6秒前
帅气的盼柳完成签到,获得积分10
6秒前
英姑应助ljys采纳,获得10
6秒前
哇哈哈完成签到,获得积分10
7秒前
8秒前
8秒前
Junior完成签到,获得积分10
10秒前
优雅的纸鹤完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
渐渐完成签到,获得积分10
11秒前
小张发布了新的文献求助10
11秒前
11秒前
12秒前
科研通AI5应助ccc采纳,获得10
12秒前
chen完成签到,获得积分20
12秒前
洛洛发布了新的文献求助10
12秒前
hanjresearch完成签到,获得积分10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488751
求助须知:如何正确求助?哪些是违规求助? 3076283
关于积分的说明 9144615
捐赠科研通 2768593
什么是DOI,文献DOI怎么找? 1519274
邀请新用户注册赠送积分活动 703714
科研通“疑难数据库(出版商)”最低求助积分说明 701952