医学
回顾性队列研究
单变量分析
体质指数
队列
队列研究
外科
内科学
多元分析
作者
Vit Kotheeranurak,Khanathip Jitpakdee,Guang‐Xun Lin,Akaworn Mahatthanatrakul,Weerasak Singhatanadgige,Worawat Limthongkul,Wicharn Yingsakmongkol,Jin‐Sung Kim
标识
DOI:10.1177/21925682211067210
摘要
Retrospective cohort study.This study aimed to report the incidence and potential risk factors of polyetheretherketone (PEEK) cage subsidence following oblique lateral interbody fusion (OLIF) for lumbar degenerative diseases. We proposed also an algorithm to minimize subsidence following OLIF surgery.The study included a retrospective cohort of 107 consecutive patients (48 men and 59 women; mean age, 67.4 years) who had received either single- or multi-level OLIF between 2012 and 2019. Patients were classified into subsidence and non-subsidence groups. PEEK cage subsidence was defined as any violation of either endplate from the computed tomography scan in both sagittal and coronal views. Preoperative variables such as age, sex, body mass index, bone mineral density (BMD) measured by preoperative dual-energy X-ray absorptiometry, smoking status, corticosteroid use, diagnosis, operative level, multifidus muscle cross-sectional area, and multifidus muscle fatty degeneration were collected. Age-related variables (height and length) were also documented. Univariate and multivariate logistic regression analyses were used to analyze the risk factors of subsidence.Of the 107 patients (137 levels), 50 (46.7%) met the subsidence criteria. Higher PEEK cage height had the strongest association with subsidence (OR = 9.59, P < .001). Other factors significantly associated with cage subsistence included age >60 years (OR = 3.15, P = .018), BMD <-2.5 (OR = 2.78, P = .006), and severe multifidus muscle fatty degeneration (OR = 1.97, P = .023).Risk factors for subsidence in OLIF were age >60 years, BMD < -2.5, higher cage height, and severe multifidus muscle fatty degeneration. Patients who had subsidence had worse early (3 months) postoperative back and leg pain.
科研通智能强力驱动
Strongly Powered by AbleSci AI