亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comprehensive Analysis of the Prognostic Values of the TRIM Family in Hepatocellular Carcinoma

肝细胞癌 接收机工作特性 比例危险模型 列线图 修剪 医学 肿瘤科 肝癌 生存分析 基因 癌症研究 内科学 生物 遗传学 计算机科学 操作系统
作者
Weiyu Dai,Jing Wang,Wang Zhi,Yizhi Xiao,Jiaying Li,Linjie Hong,Miaomiao Pei,Jieming Zhang,Ping Yang,Xiaosheng Wu,Weimei Tang,Xiaoling Jiang,Ping Jiang,Xiang Li,Aimin Li,Jing Lin,Side Liu
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:10
标识
DOI:10.3389/fonc.2021.767644
摘要

Background Accumulating studies have demonstrated the abnormal expressions and prognostic values of certain members of the tripartite motif (TRIM) family in diverse cancers. However, comprehensive prognostic values of the TRIM family in hepatocellular carcinoma (HCC) are yet to be clearly defined. Methods The prognostic values of the TRIM family were evaluated by survival analysis and univariate Cox regression analysis based on gene expression data and clinical data of HCC from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The expression profiles, protein–protein interaction among the TRIM family, prediction of transcription factors (TFs) or miRNAs, genetic alterations, correlations with the hallmarks of cancer and immune infiltrates, and pathway enrichment analysis were explored by multiple public databases. Further, a TRIM family gene-based signature for predicting overall survival (OS) in HCC was built by using the least absolute shrinkage and selection operator (LASSO) regression. TCGA–Liver Hepatocellular Carcinoma (LIHC) cohort was used as the training set, and GSE76427 was used for external validation. Time-dependent receiver operating characteristic (ROC) and survival analysis were used to estimate the signature. Finally, a nomogram combining the TRIM family risk score and clinical parameters was established. Results High expressions of TRIM family members including TRIM3, TRIM5, MID1, TRIM21, TRIM27, TRIM32, TRIM44, TRIM47, and TRIM72 were significantly associated with HCC patients’ poor OS. A novel TRIM family gene-based signature (including TRIM5, MID1, TRIM21, TRIM32, TRIM44, and TRIM47) was built for OS prediction in HCC. ROC curves suggested the signature’s good performance in OS prediction. HCC patients in the high-risk group had poorer OS than the low-risk patients based on the signature. A nomogram integrating the TRIM family risk score, age, and TNM stage was established. The ROC curves suggested that the signature presented better discrimination than the similar model without the TRIM family risk score. Conclusion Our study identified the potential application values of the TRIM family for outcome prediction in HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助科研通管家采纳,获得10
6秒前
ceeray23应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
宅心仁厚完成签到 ,获得积分10
11秒前
SciGPT应助肉丝儿采纳,获得10
12秒前
45秒前
我是老大应助会飞的蜗牛采纳,获得10
48秒前
肉丝儿发布了新的文献求助10
48秒前
Alaska发布了新的文献求助10
1分钟前
看不了一点文献应助Alaska采纳,获得10
1分钟前
asd完成签到,获得积分10
1分钟前
科研通AI2S应助ninomiya0采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
lily发布了新的文献求助10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
lily完成签到,获得积分10
2分钟前
fyr关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
2分钟前
fyr发布了新的文献求助10
2分钟前
3分钟前
3分钟前
obedVL完成签到,获得积分10
3分钟前
Alaska完成签到,获得积分10
3分钟前
Alaska发布了新的文献求助10
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
啦啦完成签到 ,获得积分10
4分钟前
5分钟前
daomaihu完成签到,获得积分10
5分钟前
迅速的念芹完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407926
求助须知:如何正确求助?哪些是违规求助? 4525379
关于积分的说明 14101723
捐赠科研通 4439250
什么是DOI,文献DOI怎么找? 2436676
邀请新用户注册赠送积分活动 1428660
关于科研通互助平台的介绍 1406740