Visual fault detection in photovoltaic modules using decision tree algorithms with deep learning features

C4.5算法 决策树 计算机科学 树(集合论) 算法 人工智能 卷积神经网络 断层(地质) 机器学习 故障树分析 随机森林 树遍历 特征(语言学) 模式识别(心理学) 朴素贝叶斯分类器 支持向量机 数学 工程类 可靠性工程 地质学 数学分析 语言学 哲学 地震学
作者
Naveen Venkatesh Sridharan,V. Sugumaran
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:: 1-17 被引量:15
标识
DOI:10.1080/15567036.2021.2020379
摘要

Visual faults in photovoltaic (PV) modules persist as a problem that can create consequences such as reduced life span, increased output power loss and raising safety concerns during operation. Increased manpower requirement, larger time consumption, confinement to single fault prediction and high initial cost are certain drawbacks of conventional fault diagnosis techniques. Recent advancements in technology and the innovation of scientific techniques have urged the need for advanced fault diagnosis techniques that deliver instantaneous results. In the present study, unmanned aerial vehicles (UAVs) were employed to capture images of PVM with visual faults. The most common visual faults in photovoltaic modules (PVM) are delamination, burn marks, glass breakage, discoloration, and snail trails. Each fault condition contains a unique image pattern appearance attributed to the particular type of fault. Such patterns are extracted using convolutional neural networks and classified with the help of decision tree algorithms. First, the features are extracted from these aerial images by utilizing pre-trained AlexNet convolutional neural networks. Secondly, the J48 decision tree algorithm is utilized to select the most significant and valuable features from the extracted image features. Finally, the classification is carried out with several decision tree algorithms such as decision stump, hoeffiding tree, J48, linear model tree (LMT), random forest, random tree, representative (REP) tree, best first (BF) tree, extra tree, functional tree (FT), J48 consolidated, J48 graft, least absolute deviation (LAD) tree, naïve bayes (NB) tree and simple cart. The classification accuracies of the algorithms mentioned above are compared to suggest the best-in-class algorithm for real-time application. Among all the available tree-based algorithms, the random forest algorithm produced a maximum classification accuracy of 98.25% with a computational time of 0.89 seconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的书兰完成签到,获得积分10
1秒前
Anan发布了新的文献求助10
1秒前
乐乐应助肉肉采纳,获得10
1秒前
爆米花应助Jeri采纳,获得10
2秒前
lili888完成签到,获得积分10
2秒前
松弛的小刀完成签到,获得积分10
2秒前
铅笔丶完成签到,获得积分10
3秒前
abrr完成签到,获得积分10
3秒前
小高同志发布了新的文献求助10
3秒前
Hilda007发布了新的文献求助30
3秒前
彭洪凯完成签到,获得积分10
3秒前
yyyzzz完成签到,获得积分10
3秒前
希望天下0贩的0应助XYF采纳,获得10
4秒前
赘婿应助wait采纳,获得10
5秒前
小南瓜完成签到,获得积分10
5秒前
han完成签到,获得积分10
6秒前
小南瓜发布了新的文献求助10
8秒前
9秒前
9秒前
orixero应助杨亚轩采纳,获得10
9秒前
andrele发布了新的文献求助10
10秒前
田様应助昌莆采纳,获得10
11秒前
领导范儿应助Mathletics采纳,获得10
11秒前
11秒前
何书易发布了新的文献求助20
11秒前
白昼星辰完成签到,获得积分10
12秒前
13秒前
沉默丹亦完成签到 ,获得积分10
14秒前
14秒前
14秒前
15秒前
李卓发布了新的文献求助10
15秒前
科研通AI6应助Ginkgo采纳,获得10
15秒前
mikasa发布了新的文献求助10
16秒前
华仔应助文静幼荷采纳,获得10
16秒前
16秒前
16秒前
脑洞疼应助肉肉采纳,获得10
17秒前
17秒前
赘婿应助木木采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393870
求助须知:如何正确求助?哪些是违规求助? 4515281
关于积分的说明 14053296
捐赠科研通 4426429
什么是DOI,文献DOI怎么找? 2431383
邀请新用户注册赠送积分活动 1423533
关于科研通互助平台的介绍 1402529