Visual fault detection in photovoltaic modules using decision tree algorithms with deep learning features

C4.5算法 决策树 计算机科学 树(集合论) 算法 人工智能 卷积神经网络 断层(地质) 机器学习 故障树分析 随机森林 树遍历 特征(语言学) 模式识别(心理学) 朴素贝叶斯分类器 支持向量机 数学 工程类 可靠性工程 地质学 数学分析 语言学 哲学 地震学
作者
Naveen Venkatesh Sridharan,V. Sugumaran
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:: 1-17 被引量:15
标识
DOI:10.1080/15567036.2021.2020379
摘要

Visual faults in photovoltaic (PV) modules persist as a problem that can create consequences such as reduced life span, increased output power loss and raising safety concerns during operation. Increased manpower requirement, larger time consumption, confinement to single fault prediction and high initial cost are certain drawbacks of conventional fault diagnosis techniques. Recent advancements in technology and the innovation of scientific techniques have urged the need for advanced fault diagnosis techniques that deliver instantaneous results. In the present study, unmanned aerial vehicles (UAVs) were employed to capture images of PVM with visual faults. The most common visual faults in photovoltaic modules (PVM) are delamination, burn marks, glass breakage, discoloration, and snail trails. Each fault condition contains a unique image pattern appearance attributed to the particular type of fault. Such patterns are extracted using convolutional neural networks and classified with the help of decision tree algorithms. First, the features are extracted from these aerial images by utilizing pre-trained AlexNet convolutional neural networks. Secondly, the J48 decision tree algorithm is utilized to select the most significant and valuable features from the extracted image features. Finally, the classification is carried out with several decision tree algorithms such as decision stump, hoeffiding tree, J48, linear model tree (LMT), random forest, random tree, representative (REP) tree, best first (BF) tree, extra tree, functional tree (FT), J48 consolidated, J48 graft, least absolute deviation (LAD) tree, naïve bayes (NB) tree and simple cart. The classification accuracies of the algorithms mentioned above are compared to suggest the best-in-class algorithm for real-time application. Among all the available tree-based algorithms, the random forest algorithm produced a maximum classification accuracy of 98.25% with a computational time of 0.89 seconds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西大喜完成签到,获得积分10
1秒前
2秒前
英俊的铭应助姚昂采纳,获得10
2秒前
2秒前
2秒前
susiex完成签到,获得积分10
3秒前
安详夏彤发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
波谷完成签到,获得积分10
3秒前
3秒前
研友_ndDjBn发布了新的文献求助10
3秒前
Betsy完成签到 ,获得积分10
4秒前
bai发布了新的文献求助10
4秒前
5秒前
一百度黑发布了新的文献求助10
5秒前
6秒前
JNuidcyk完成签到,获得积分10
7秒前
8秒前
花里尘发布了新的文献求助10
8秒前
CCY777发布了新的文献求助10
11秒前
11秒前
11秒前
刻苦惜萍发布了新的文献求助10
11秒前
位伟发布了新的文献求助10
12秒前
鲨鱼完成签到,获得积分10
12秒前
Hello应助lft361采纳,获得30
13秒前
13秒前
yanying_shc完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
充电宝应助灰哩采纳,获得10
15秒前
小马甲应助迷路枫采纳,获得10
15秒前
luluan发布了新的文献求助10
16秒前
bai完成签到,获得积分10
16秒前
在水一方应助张志超采纳,获得10
17秒前
团子好无情完成签到 ,获得积分10
17秒前
香山叶正红完成签到 ,获得积分10
17秒前
科研通AI6应助研友_ndDjBn采纳,获得10
17秒前
科研通AI6应助研友_ndDjBn采纳,获得10
17秒前
Ava应助刻苦惜萍采纳,获得10
17秒前
芊芊君子完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646337
求助须知:如何正确求助?哪些是违规求助? 4771156
关于积分的说明 15034647
捐赠科研通 4805157
什么是DOI,文献DOI怎么找? 2569497
邀请新用户注册赠送积分活动 1526514
关于科研通互助平台的介绍 1485836