Visual fault detection in photovoltaic modules using decision tree algorithms with deep learning features

C4.5算法 决策树 计算机科学 树(集合论) 算法 人工智能 卷积神经网络 断层(地质) 机器学习 故障树分析 随机森林 树遍历 特征(语言学) 模式识别(心理学) 朴素贝叶斯分类器 支持向量机 数学 工程类 可靠性工程 地质学 数学分析 语言学 哲学 地震学
作者
Naveen Venkatesh Sridharan,V. Sugumaran
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:: 1-17 被引量:15
标识
DOI:10.1080/15567036.2021.2020379
摘要

Visual faults in photovoltaic (PV) modules persist as a problem that can create consequences such as reduced life span, increased output power loss and raising safety concerns during operation. Increased manpower requirement, larger time consumption, confinement to single fault prediction and high initial cost are certain drawbacks of conventional fault diagnosis techniques. Recent advancements in technology and the innovation of scientific techniques have urged the need for advanced fault diagnosis techniques that deliver instantaneous results. In the present study, unmanned aerial vehicles (UAVs) were employed to capture images of PVM with visual faults. The most common visual faults in photovoltaic modules (PVM) are delamination, burn marks, glass breakage, discoloration, and snail trails. Each fault condition contains a unique image pattern appearance attributed to the particular type of fault. Such patterns are extracted using convolutional neural networks and classified with the help of decision tree algorithms. First, the features are extracted from these aerial images by utilizing pre-trained AlexNet convolutional neural networks. Secondly, the J48 decision tree algorithm is utilized to select the most significant and valuable features from the extracted image features. Finally, the classification is carried out with several decision tree algorithms such as decision stump, hoeffiding tree, J48, linear model tree (LMT), random forest, random tree, representative (REP) tree, best first (BF) tree, extra tree, functional tree (FT), J48 consolidated, J48 graft, least absolute deviation (LAD) tree, naïve bayes (NB) tree and simple cart. The classification accuracies of the algorithms mentioned above are compared to suggest the best-in-class algorithm for real-time application. Among all the available tree-based algorithms, the random forest algorithm produced a maximum classification accuracy of 98.25% with a computational time of 0.89 seconds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助xl采纳,获得10
1秒前
隐形曼青应助zeta采纳,获得10
1秒前
heady发布了新的文献求助10
2秒前
LLM发布了新的文献求助10
2秒前
hui关闭了hui文献求助
2秒前
无极微光应助派大星采纳,获得20
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
大模型应助FlipFlops采纳,获得10
3秒前
坚强的元珊应助猪猪hero采纳,获得20
3秒前
luanzhaohui发布了新的文献求助50
4秒前
jia完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
向北发布了新的文献求助20
4秒前
kimchiyak给咯咯咯的求助进行了留言
5秒前
6秒前
6秒前
外向的初曼完成签到,获得积分10
6秒前
NexusExplorer应助wuran采纳,获得10
6秒前
复杂的梦易完成签到,获得积分10
7秒前
FashionBoy应助zhou采纳,获得10
7秒前
柳博超完成签到,获得积分10
8秒前
KHromance发布了新的文献求助10
9秒前
duoduo发布了新的文献求助20
9秒前
unicorn完成签到,获得积分10
9秒前
LLM完成签到,获得积分10
10秒前
ss发布了新的文献求助10
10秒前
跳跃完成签到,获得积分10
10秒前
jksg发布了新的文献求助10
11秒前
打打应助熙可檬采纳,获得10
12秒前
12秒前
传奇3应助pure采纳,获得10
13秒前
彩色的曼柔完成签到 ,获得积分10
13秒前
enen发布了新的文献求助10
13秒前
魔幻的翠容完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320