Visual fault detection in photovoltaic modules using decision tree algorithms with deep learning features

C4.5算法 决策树 计算机科学 树(集合论) 算法 人工智能 卷积神经网络 断层(地质) 机器学习 故障树分析 随机森林 树遍历 特征(语言学) 模式识别(心理学) 朴素贝叶斯分类器 支持向量机 数学 工程类 可靠性工程 地质学 哲学 数学分析 地震学 语言学
作者
Naveen Venkatesh Sridharan,V. Sugumaran
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Taylor & Francis]
卷期号:: 1-17 被引量:15
标识
DOI:10.1080/15567036.2021.2020379
摘要

Visual faults in photovoltaic (PV) modules persist as a problem that can create consequences such as reduced life span, increased output power loss and raising safety concerns during operation. Increased manpower requirement, larger time consumption, confinement to single fault prediction and high initial cost are certain drawbacks of conventional fault diagnosis techniques. Recent advancements in technology and the innovation of scientific techniques have urged the need for advanced fault diagnosis techniques that deliver instantaneous results. In the present study, unmanned aerial vehicles (UAVs) were employed to capture images of PVM with visual faults. The most common visual faults in photovoltaic modules (PVM) are delamination, burn marks, glass breakage, discoloration, and snail trails. Each fault condition contains a unique image pattern appearance attributed to the particular type of fault. Such patterns are extracted using convolutional neural networks and classified with the help of decision tree algorithms. First, the features are extracted from these aerial images by utilizing pre-trained AlexNet convolutional neural networks. Secondly, the J48 decision tree algorithm is utilized to select the most significant and valuable features from the extracted image features. Finally, the classification is carried out with several decision tree algorithms such as decision stump, hoeffiding tree, J48, linear model tree (LMT), random forest, random tree, representative (REP) tree, best first (BF) tree, extra tree, functional tree (FT), J48 consolidated, J48 graft, least absolute deviation (LAD) tree, naïve bayes (NB) tree and simple cart. The classification accuracies of the algorithms mentioned above are compared to suggest the best-in-class algorithm for real-time application. Among all the available tree-based algorithms, the random forest algorithm produced a maximum classification accuracy of 98.25% with a computational time of 0.89 seconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依依完成签到 ,获得积分0
3秒前
MISSIW完成签到,获得积分10
4秒前
HHHAN发布了新的文献求助10
7秒前
胡胡完成签到 ,获得积分10
8秒前
火星上小土豆完成签到 ,获得积分10
18秒前
杰尼龟的鱼完成签到 ,获得积分10
22秒前
安然完成签到 ,获得积分10
23秒前
张希伦完成签到 ,获得积分10
23秒前
任性翠安完成签到 ,获得积分10
27秒前
dong完成签到 ,获得积分10
29秒前
神说完成签到,获得积分0
31秒前
量子星尘发布了新的文献求助10
37秒前
Aimee完成签到 ,获得积分10
37秒前
徐彬荣完成签到,获得积分10
38秒前
研友_8yN60L完成签到,获得积分10
39秒前
搜集达人应助科研通管家采纳,获得10
39秒前
光亮的自行车完成签到 ,获得积分10
39秒前
李东东完成签到 ,获得积分10
54秒前
王多肉完成签到,获得积分10
58秒前
Iiiilr完成签到 ,获得积分10
59秒前
杨幂完成签到,获得积分10
1分钟前
1分钟前
hellokitty完成签到,获得积分10
1分钟前
1分钟前
小四发布了新的文献求助10
1分钟前
1分钟前
西瓜完成签到 ,获得积分10
1分钟前
包容的忆灵完成签到 ,获得积分10
1分钟前
高兴尔冬发布了新的文献求助10
1分钟前
xiang完成签到 ,获得积分0
1分钟前
小四完成签到,获得积分10
1分钟前
FashionBoy应助slayers采纳,获得30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
黑眼圈完成签到 ,获得积分10
1分钟前
jia完成签到 ,获得积分10
1分钟前
如履平川完成签到 ,获得积分10
1分钟前
科目三应助忧伤的步美采纳,获得10
1分钟前
大椒完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022