Visual fault detection in photovoltaic modules using decision tree algorithms with deep learning features

C4.5算法 决策树 计算机科学 树(集合论) 算法 人工智能 卷积神经网络 断层(地质) 机器学习 故障树分析 随机森林 树遍历 特征(语言学) 模式识别(心理学) 朴素贝叶斯分类器 支持向量机 数学 工程类 可靠性工程 地质学 数学分析 语言学 哲学 地震学
作者
Naveen Venkatesh Sridharan,V. Sugumaran
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:: 1-17 被引量:15
标识
DOI:10.1080/15567036.2021.2020379
摘要

Visual faults in photovoltaic (PV) modules persist as a problem that can create consequences such as reduced life span, increased output power loss and raising safety concerns during operation. Increased manpower requirement, larger time consumption, confinement to single fault prediction and high initial cost are certain drawbacks of conventional fault diagnosis techniques. Recent advancements in technology and the innovation of scientific techniques have urged the need for advanced fault diagnosis techniques that deliver instantaneous results. In the present study, unmanned aerial vehicles (UAVs) were employed to capture images of PVM with visual faults. The most common visual faults in photovoltaic modules (PVM) are delamination, burn marks, glass breakage, discoloration, and snail trails. Each fault condition contains a unique image pattern appearance attributed to the particular type of fault. Such patterns are extracted using convolutional neural networks and classified with the help of decision tree algorithms. First, the features are extracted from these aerial images by utilizing pre-trained AlexNet convolutional neural networks. Secondly, the J48 decision tree algorithm is utilized to select the most significant and valuable features from the extracted image features. Finally, the classification is carried out with several decision tree algorithms such as decision stump, hoeffiding tree, J48, linear model tree (LMT), random forest, random tree, representative (REP) tree, best first (BF) tree, extra tree, functional tree (FT), J48 consolidated, J48 graft, least absolute deviation (LAD) tree, naïve bayes (NB) tree and simple cart. The classification accuracies of the algorithms mentioned above are compared to suggest the best-in-class algorithm for real-time application. Among all the available tree-based algorithms, the random forest algorithm produced a maximum classification accuracy of 98.25% with a computational time of 0.89 seconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮忆南发布了新的文献求助10
刚刚
Qz完成签到,获得积分10
刚刚
underunder完成签到,获得积分10
刚刚
1秒前
啊啊啊苏完成签到 ,获得积分10
1秒前
lq发布了新的文献求助10
1秒前
1秒前
1秒前
狂野静曼发布了新的文献求助10
2秒前
Uber完成签到 ,获得积分10
2秒前
公司账号2发布了新的文献求助10
4秒前
领导范儿应助天空采纳,获得10
4秒前
4秒前
李男孩完成签到,获得积分20
5秒前
汉堡包应助PB采纳,获得10
5秒前
黄梓同完成签到,获得积分10
5秒前
李健应助老实凝蕊采纳,获得10
5秒前
NexusExplorer应助贾哲宇采纳,获得10
5秒前
钙帮弟子完成签到,获得积分10
5秒前
5秒前
高兴象完成签到,获得积分10
6秒前
6秒前
乐乐应助机智谷蕊采纳,获得10
7秒前
cheng完成签到,获得积分10
7秒前
Akim应助火星人采纳,获得10
7秒前
英俊的铭应助精明的忆灵采纳,获得10
7秒前
8秒前
希望天下0贩的0应助Dream采纳,获得10
8秒前
8秒前
9秒前
英俊的铭应助三木采纳,获得10
9秒前
霸气的若菱完成签到,获得积分20
9秒前
JamesPei应助andou采纳,获得10
9秒前
募股小完成签到,获得积分10
10秒前
张航天发布了新的文献求助10
10秒前
doudou发布了新的文献求助10
10秒前
Jasper应助不学无墅采纳,获得10
10秒前
10秒前
12发布了新的文献求助10
11秒前
斯文冷亦发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472829
求助须知:如何正确求助?哪些是违规求助? 4575043
关于积分的说明 14350202
捐赠科研通 4502414
什么是DOI,文献DOI怎么找? 2467157
邀请新用户注册赠送积分活动 1455101
关于科研通互助平台的介绍 1429246