Visual fault detection in photovoltaic modules using decision tree algorithms with deep learning features

C4.5算法 决策树 计算机科学 树(集合论) 算法 人工智能 卷积神经网络 断层(地质) 机器学习 故障树分析 随机森林 树遍历 特征(语言学) 模式识别(心理学) 朴素贝叶斯分类器 支持向量机 数学 工程类 可靠性工程 地质学 哲学 数学分析 地震学 语言学
作者
Naveen Venkatesh Sridharan,V. Sugumaran
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:: 1-17 被引量:15
标识
DOI:10.1080/15567036.2021.2020379
摘要

Visual faults in photovoltaic (PV) modules persist as a problem that can create consequences such as reduced life span, increased output power loss and raising safety concerns during operation. Increased manpower requirement, larger time consumption, confinement to single fault prediction and high initial cost are certain drawbacks of conventional fault diagnosis techniques. Recent advancements in technology and the innovation of scientific techniques have urged the need for advanced fault diagnosis techniques that deliver instantaneous results. In the present study, unmanned aerial vehicles (UAVs) were employed to capture images of PVM with visual faults. The most common visual faults in photovoltaic modules (PVM) are delamination, burn marks, glass breakage, discoloration, and snail trails. Each fault condition contains a unique image pattern appearance attributed to the particular type of fault. Such patterns are extracted using convolutional neural networks and classified with the help of decision tree algorithms. First, the features are extracted from these aerial images by utilizing pre-trained AlexNet convolutional neural networks. Secondly, the J48 decision tree algorithm is utilized to select the most significant and valuable features from the extracted image features. Finally, the classification is carried out with several decision tree algorithms such as decision stump, hoeffiding tree, J48, linear model tree (LMT), random forest, random tree, representative (REP) tree, best first (BF) tree, extra tree, functional tree (FT), J48 consolidated, J48 graft, least absolute deviation (LAD) tree, naïve bayes (NB) tree and simple cart. The classification accuracies of the algorithms mentioned above are compared to suggest the best-in-class algorithm for real-time application. Among all the available tree-based algorithms, the random forest algorithm produced a maximum classification accuracy of 98.25% with a computational time of 0.89 seconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
唯为发布了新的文献求助10
刚刚
祎思发布了新的文献求助10
刚刚
Once完成签到,获得积分10
2秒前
皇额娘她推了熹娘娘完成签到 ,获得积分10
4秒前
4秒前
嗯哼应助左丘以云采纳,获得20
5秒前
5秒前
白菜完成签到 ,获得积分0
5秒前
6秒前
张朝凯发布了新的文献求助30
6秒前
XS123应助平淡雪糕采纳,获得10
6秒前
哈哈哈完成签到 ,获得积分10
7秒前
7秒前
7秒前
负责小蜜蜂完成签到,获得积分10
8秒前
付佳佳完成签到,获得积分10
8秒前
甜甜的采蓝完成签到,获得积分20
9秒前
小心发布了新的文献求助30
10秒前
10秒前
观鹤轩完成签到,获得积分10
11秒前
BioZheng应助JAMA采纳,获得30
11秒前
念兹在兹完成签到,获得积分10
12秒前
gxyyyy发布了新的文献求助10
12秒前
科研通AI2S应助十四采纳,获得10
13秒前
breaks完成签到,获得积分10
13秒前
沉默大白发布了新的文献求助10
14秒前
论文多多完成签到,获得积分10
14秒前
思源应助菠萝炒饭采纳,获得10
14秒前
NexusExplorer应助ark861023采纳,获得10
14秒前
入秋的杰尼龟完成签到,获得积分10
15秒前
15秒前
青尘枫叶发布了新的文献求助10
15秒前
16秒前
NexusExplorer应助winwinhhh采纳,获得10
17秒前
17秒前
玔堷完成签到,获得积分0
17秒前
等待蚂蚁发布了新的文献求助20
18秒前
入戏太深发布了新的文献求助10
18秒前
科研小能手完成签到,获得积分10
18秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052912
求助须知:如何正确求助?哪些是违规求助? 2710137
关于积分的说明 7419790
捐赠科研通 2354754
什么是DOI,文献DOI怎么找? 1246249
科研通“疑难数据库(出版商)”最低求助积分说明 606002
版权声明 595975