Visual fault detection in photovoltaic modules using decision tree algorithms with deep learning features

C4.5算法 决策树 计算机科学 树(集合论) 算法 人工智能 卷积神经网络 断层(地质) 机器学习 故障树分析 随机森林 树遍历 特征(语言学) 模式识别(心理学) 朴素贝叶斯分类器 支持向量机 数学 工程类 可靠性工程 地质学 哲学 数学分析 地震学 语言学
作者
Naveen Venkatesh Sridharan,V. Sugumaran
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Taylor & Francis]
卷期号:: 1-17 被引量:15
标识
DOI:10.1080/15567036.2021.2020379
摘要

Visual faults in photovoltaic (PV) modules persist as a problem that can create consequences such as reduced life span, increased output power loss and raising safety concerns during operation. Increased manpower requirement, larger time consumption, confinement to single fault prediction and high initial cost are certain drawbacks of conventional fault diagnosis techniques. Recent advancements in technology and the innovation of scientific techniques have urged the need for advanced fault diagnosis techniques that deliver instantaneous results. In the present study, unmanned aerial vehicles (UAVs) were employed to capture images of PVM with visual faults. The most common visual faults in photovoltaic modules (PVM) are delamination, burn marks, glass breakage, discoloration, and snail trails. Each fault condition contains a unique image pattern appearance attributed to the particular type of fault. Such patterns are extracted using convolutional neural networks and classified with the help of decision tree algorithms. First, the features are extracted from these aerial images by utilizing pre-trained AlexNet convolutional neural networks. Secondly, the J48 decision tree algorithm is utilized to select the most significant and valuable features from the extracted image features. Finally, the classification is carried out with several decision tree algorithms such as decision stump, hoeffiding tree, J48, linear model tree (LMT), random forest, random tree, representative (REP) tree, best first (BF) tree, extra tree, functional tree (FT), J48 consolidated, J48 graft, least absolute deviation (LAD) tree, naïve bayes (NB) tree and simple cart. The classification accuracies of the algorithms mentioned above are compared to suggest the best-in-class algorithm for real-time application. Among all the available tree-based algorithms, the random forest algorithm produced a maximum classification accuracy of 98.25% with a computational time of 0.89 seconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
轻松的梦竹完成签到,获得积分10
1秒前
1秒前
渡江渡完成签到,获得积分20
2秒前
3秒前
细心雨安完成签到 ,获得积分10
3秒前
于于发布了新的文献求助10
3秒前
斯文败类应助red采纳,获得10
3秒前
3秒前
3秒前
aa完成签到,获得积分10
3秒前
4秒前
十八完成签到,获得积分10
4秒前
yolo发布了新的文献求助10
4秒前
张张园完成签到,获得积分10
5秒前
发酱完成签到,获得积分10
5秒前
张自燮完成签到,获得积分10
5秒前
5秒前
顾一纯完成签到 ,获得积分10
6秒前
6秒前
瑾玉完成签到,获得积分10
6秒前
6秒前
原始人完成签到,获得积分10
7秒前
7秒前
崛宸发布了新的文献求助50
7秒前
鑫搭发布了新的文献求助10
7秒前
8秒前
谢爱佳发布了新的文献求助10
9秒前
大爱人生发布了新的文献求助10
9秒前
zhuyuxin发布了新的文献求助10
10秒前
合适的蛋挞完成签到,获得积分20
11秒前
杨乃彬完成签到,获得积分10
11秒前
12秒前
beifeng发布了新的文献求助10
12秒前
12秒前
包容的惜雪完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
顾一纯关注了科研通微信公众号
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4913717
求助须知:如何正确求助?哪些是违规求助? 4188247
关于积分的说明 13007459
捐赠科研通 3956973
什么是DOI,文献DOI怎么找? 2169503
邀请新用户注册赠送积分活动 1187820
关于科研通互助平台的介绍 1095383