Visual fault detection in photovoltaic modules using decision tree algorithms with deep learning features

C4.5算法 决策树 计算机科学 树(集合论) 算法 人工智能 卷积神经网络 断层(地质) 机器学习 故障树分析 随机森林 树遍历 特征(语言学) 模式识别(心理学) 朴素贝叶斯分类器 支持向量机 数学 工程类 可靠性工程 地质学 数学分析 语言学 哲学 地震学
作者
Naveen Venkatesh Sridharan,V. Sugumaran
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:: 1-17 被引量:15
标识
DOI:10.1080/15567036.2021.2020379
摘要

Visual faults in photovoltaic (PV) modules persist as a problem that can create consequences such as reduced life span, increased output power loss and raising safety concerns during operation. Increased manpower requirement, larger time consumption, confinement to single fault prediction and high initial cost are certain drawbacks of conventional fault diagnosis techniques. Recent advancements in technology and the innovation of scientific techniques have urged the need for advanced fault diagnosis techniques that deliver instantaneous results. In the present study, unmanned aerial vehicles (UAVs) were employed to capture images of PVM with visual faults. The most common visual faults in photovoltaic modules (PVM) are delamination, burn marks, glass breakage, discoloration, and snail trails. Each fault condition contains a unique image pattern appearance attributed to the particular type of fault. Such patterns are extracted using convolutional neural networks and classified with the help of decision tree algorithms. First, the features are extracted from these aerial images by utilizing pre-trained AlexNet convolutional neural networks. Secondly, the J48 decision tree algorithm is utilized to select the most significant and valuable features from the extracted image features. Finally, the classification is carried out with several decision tree algorithms such as decision stump, hoeffiding tree, J48, linear model tree (LMT), random forest, random tree, representative (REP) tree, best first (BF) tree, extra tree, functional tree (FT), J48 consolidated, J48 graft, least absolute deviation (LAD) tree, naïve bayes (NB) tree and simple cart. The classification accuracies of the algorithms mentioned above are compared to suggest the best-in-class algorithm for real-time application. Among all the available tree-based algorithms, the random forest algorithm produced a maximum classification accuracy of 98.25% with a computational time of 0.89 seconds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓静完成签到 ,获得积分10
刚刚
rmbsLHC发布了新的文献求助30
刚刚
拼搏的白玉完成签到,获得积分10
刚刚
我爱上班完成签到,获得积分10
1秒前
绿色催化发布了新的文献求助10
1秒前
小羊完成签到,获得积分10
1秒前
1秒前
1秒前
百里三问完成签到,获得积分10
1秒前
小蘑菇应助章文荣采纳,获得10
2秒前
wucl1990发布了新的文献求助10
2秒前
小不58完成签到,获得积分10
2秒前
无花果应助叶颤采纳,获得10
2秒前
2秒前
demia完成签到,获得积分10
2秒前
Sumengyan发布了新的文献求助10
2秒前
Owen应助谨慎的凝丝采纳,获得20
3秒前
qianqiu完成签到 ,获得积分10
3秒前
3秒前
abc97发布了新的文献求助30
4秒前
无心的小甜瓜完成签到 ,获得积分10
4秒前
我爱上班发布了新的文献求助30
4秒前
4秒前
酷波er应助英俊的小恐龙采纳,获得10
5秒前
yy发布了新的文献求助10
5秒前
俭朴幼荷应助suhanxing采纳,获得10
5秒前
5秒前
锅里有虾完成签到,获得积分10
6秒前
憨憨发布了新的文献求助10
6秒前
平淡尔琴完成签到,获得积分10
8秒前
8秒前
正反馈发布了新的文献求助10
9秒前
科研通AI6应助科研通管家采纳,获得30
9秒前
Owen应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
10秒前
朱朱珠珠应助科研通管家采纳,获得10
10秒前
rmbsLHC完成签到,获得积分10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582755
求助须知:如何正确求助?哪些是违规求助? 4666874
关于积分的说明 14764127
捐赠科研通 4608899
什么是DOI,文献DOI怎么找? 2528885
邀请新用户注册赠送积分活动 1498196
关于科研通互助平台的介绍 1466887