Visual fault detection in photovoltaic modules using decision tree algorithms with deep learning features

C4.5算法 决策树 计算机科学 树(集合论) 算法 人工智能 卷积神经网络 断层(地质) 机器学习 故障树分析 随机森林 树遍历 特征(语言学) 模式识别(心理学) 朴素贝叶斯分类器 支持向量机 数学 工程类 可靠性工程 地质学 哲学 数学分析 地震学 语言学
作者
Naveen Venkatesh Sridharan,V. Sugumaran
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:: 1-17 被引量:15
标识
DOI:10.1080/15567036.2021.2020379
摘要

Visual faults in photovoltaic (PV) modules persist as a problem that can create consequences such as reduced life span, increased output power loss and raising safety concerns during operation. Increased manpower requirement, larger time consumption, confinement to single fault prediction and high initial cost are certain drawbacks of conventional fault diagnosis techniques. Recent advancements in technology and the innovation of scientific techniques have urged the need for advanced fault diagnosis techniques that deliver instantaneous results. In the present study, unmanned aerial vehicles (UAVs) were employed to capture images of PVM with visual faults. The most common visual faults in photovoltaic modules (PVM) are delamination, burn marks, glass breakage, discoloration, and snail trails. Each fault condition contains a unique image pattern appearance attributed to the particular type of fault. Such patterns are extracted using convolutional neural networks and classified with the help of decision tree algorithms. First, the features are extracted from these aerial images by utilizing pre-trained AlexNet convolutional neural networks. Secondly, the J48 decision tree algorithm is utilized to select the most significant and valuable features from the extracted image features. Finally, the classification is carried out with several decision tree algorithms such as decision stump, hoeffiding tree, J48, linear model tree (LMT), random forest, random tree, representative (REP) tree, best first (BF) tree, extra tree, functional tree (FT), J48 consolidated, J48 graft, least absolute deviation (LAD) tree, naïve bayes (NB) tree and simple cart. The classification accuracies of the algorithms mentioned above are compared to suggest the best-in-class algorithm for real-time application. Among all the available tree-based algorithms, the random forest algorithm produced a maximum classification accuracy of 98.25% with a computational time of 0.89 seconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Kevin Li完成签到,获得积分10
1秒前
这个文献你有么完成签到,获得积分10
1秒前
orixero应助fino采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
杰哥完成签到,获得积分10
4秒前
爆米花应助Alces采纳,获得10
5秒前
5秒前
Ava应助伶俐安萱采纳,获得10
5秒前
安静的新梅应助kk采纳,获得10
5秒前
杳鸢应助兴奋大开采纳,获得10
6秒前
晨儿完成签到,获得积分10
6秒前
Lu发布了新的文献求助10
6秒前
芒果完成签到,获得积分10
7秒前
akila发布了新的文献求助10
8秒前
8秒前
丁元英完成签到,获得积分10
8秒前
8秒前
感冒了完成签到,获得积分10
8秒前
ASHDSN发布了新的文献求助10
9秒前
qqq发布了新的文献求助10
9秒前
林夕完成签到,获得积分10
9秒前
skmksd完成签到,获得积分10
10秒前
愤怒的乐松应助temp采纳,获得10
10秒前
qin希望完成签到,获得积分0
11秒前
花椰菜发布了新的文献求助10
12秒前
科研圣体完成签到,获得积分20
12秒前
糖不太甜完成签到,获得积分10
13秒前
13秒前
Xu发布了新的文献求助10
14秒前
Luzengyan发布了新的文献求助10
14秒前
陈阳发布了新的文献求助20
14秒前
SYX完成签到 ,获得积分10
15秒前
酷波er应助dgd采纳,获得10
15秒前
yang完成签到,获得积分10
15秒前
fino完成签到,获得积分10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
An Introduction to Child Language 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299125
求助须知:如何正确求助?哪些是违规求助? 2934137
关于积分的说明 8467404
捐赠科研通 2607589
什么是DOI,文献DOI怎么找? 1423778
科研通“疑难数据库(出版商)”最低求助积分说明 661689
邀请新用户注册赠送积分活动 645351