Detection of Plant Leaf-based Diseases Using Machine Learning Approach

支持向量机 农业 生产力 机器学习 鉴定(生物学) 计算机科学 统计学习 人工智能 随机森林 均方误差 农业工程 数学 统计 工程类 生物 植物 宏观经济学 经济 生态学
作者
P. Chaitanya Reddy,Rachakulla Mahesh Sarat Chandra,P Vadiraj,M. Ayyappa Reddy,T R Mahesh,Sindhu Madhuri G
标识
DOI:10.1109/csitss54238.2021.9683020
摘要

Agriculture productivity is increasing day-by-day based on recent advances and research growth in technology. Detection of plant leaf-based diseases and for improving the quality of plant leaf-based is very essential in agriculture. Detecting various plant leaf-based diseases with human sight, many laboratory-based approaches like polymerase chain reaction, decrease in food production, pest management, hyper spectral techniques are identified for detection of diseases but they are very high time consuming and high cost to the farmers. Identification of recent advanced techniques and various systematic models using Machine Learning (ML) approaches may increase the agriculture productivity. Researchers worked on modern approaches in ML algorithms for detection of leaf diseases for increasing the accuracy results. Every approach has its importance and is focused towards the direction of ML applications and is also based on issues faced by the farmers. In this research paper, detection of leaf-based diseases is analyzed using Support Vector Machine (SVM), Random Forest algorithms. The performance metrics like Root Mean Square Error (RMSE), Peak Signal Noise Ratio (PSNR), Disease affected area of the leaf by using Euclidian Distance method and Accuracy results are compared to benefit the farmers with less time, low cost and increase our agriculture productivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Candice应助孤独树叶采纳,获得10
刚刚
YUJIALING完成签到 ,获得积分10
刚刚
酷波er应助tdtk采纳,获得10
刚刚
冰冰完成签到 ,获得积分20
1秒前
1秒前
1秒前
胡桃夹子发布了新的文献求助30
1秒前
2秒前
syxz0628发布了新的文献求助10
2秒前
都可以完成签到,获得积分10
2秒前
科研通AI5应助qfchen0716网易采纳,获得10
3秒前
JamesPei应助qfchen0716网易采纳,获得10
3秒前
丘比特应助qfchen0716网易采纳,获得10
3秒前
子川发布了新的文献求助10
3秒前
田様应助qfchen0716网易采纳,获得10
3秒前
科目三应助qfchen0716网易采纳,获得10
4秒前
黄紫红蓝应助qfchen0716网易采纳,获得10
4秒前
rr发布了新的文献求助10
4秒前
科目三应助qfchen0716网易采纳,获得10
4秒前
Orange应助qfchen0716网易采纳,获得10
4秒前
FashionBoy应助qfchen0716网易采纳,获得10
4秒前
今后应助qfchen0716网易采纳,获得10
4秒前
汉堡包应助Rober采纳,获得10
4秒前
5秒前
7秒前
哈哈哈哈发布了新的文献求助10
7秒前
张大旭77发布了新的文献求助10
8秒前
10秒前
科研通AI5应助感动苡采纳,获得10
11秒前
雪山大地完成签到,获得积分10
11秒前
Beton_X发布了新的文献求助40
12秒前
13秒前
13秒前
嘿嘿嘿发布了新的文献求助10
13秒前
13秒前
14秒前
小肥鑫发布了新的文献求助10
15秒前
16秒前
scoot完成签到 ,获得积分10
16秒前
wjx关闭了wjx文献求助
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676