Joint Association of Metabolic Health and Obesity with Ten-Year Risk of Cardiovascular Disease among Chinese Adults.

肥胖 体质指数 医学 优势比 内科学 置信区间 逻辑回归 疾病 风险因素 横断面研究 代谢综合征 内分泌学 病理
作者
Jun Ting Liu,Hong Yao,Shi Cheng Yu,Jianjun Liu,Guang Jin Zhu,Shao Mei Han,Tao Xu
出处
期刊:PubMed 卷期号:35 (1): 13-21 被引量:10
标识
DOI:10.3967/bes2022.003
摘要

This study aims to investigate the association of metabolic phenotypes that are jointly determined by body mass index (BMI) or fat mass percentage and metabolic health status with the ten-year risk of cardiovascular disease (CVD) among Chinese adults.Data were obtained from a cross-sectional study. BMI and body fat mass percentage (FMP) combined with the metabolic status were used to define metabolic phenotypes. Multiple linear regression and logistic regression were used to examine the effects of metabolic phenotypes on CVD risk.A total of 13,239 adults aged 34-75 years were included in this study. Compared with the metabolically healthy non-obese (MHNO) phenotype, the metabolically unhealthy non-obese (MUNO) and metabolically unhealthy obese (MUO) phenotypes defined by BMI showed a higher CVD risk [odds ratio, OR (95% confidence interval, CI): 2.34 (1.89-2.89), 3.45 (2.50-4.75), respectively], after adjusting for the covariates. The MUNO and MUO phenotypes defined by FMP showed a higher CVD risk [ OR (95% CI): 2.31 (1.85-2.88), 2.63 (1.98-3.48), respectively] than the MHNO phenotype. The metabolically healthy obese phenotype, regardless of being defined by BMI or FMP, showed no CVD risk compared with the MHNO phenotype.General obesity without central obesity does not increase CVD risk in metabolically healthy individuals. FMP might be a more meaningful factor for the evaluation of the association of obesity with CVD risk. Obesity and metabolic status have a synergistic effect on CVD risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RUI发布了新的文献求助10
刚刚
LOYAL发布了新的文献求助10
2秒前
hhhh发布了新的文献求助10
3秒前
科研通AI5应助Ds采纳,获得10
4秒前
4秒前
山茶发布了新的文献求助10
4秒前
7秒前
JOJO发布了新的文献求助10
7秒前
浮游应助香菜采纳,获得10
8秒前
传奇3应助hhhh采纳,获得10
8秒前
8秒前
8秒前
淡淡冷荷发布了新的文献求助10
10秒前
orixero应助吴学成采纳,获得10
10秒前
文文完成签到,获得积分10
11秒前
希望天下0贩的0应助山茶采纳,获得10
11秒前
华仔应助齐天大圣采纳,获得10
12秒前
liao宝宝发布了新的文献求助10
12秒前
13秒前
完美世界应助要开心吖采纳,获得10
14秒前
科研通AI5应助LOYAL采纳,获得10
14秒前
14秒前
无花果应助飞阳采纳,获得10
15秒前
阳光应助Hmzek采纳,获得30
15秒前
rrrrrrry发布了新的文献求助10
16秒前
yuzhu完成签到,获得积分10
16秒前
无极微光应助小橘子2022采纳,获得20
17秒前
en完成签到,获得积分10
18秒前
浮游应助张宁宁采纳,获得10
18秒前
19秒前
一二发布了新的文献求助10
20秒前
20秒前
汤泽琪发布了新的文献求助10
20秒前
严珍珍完成签到 ,获得积分10
21秒前
baling发布了新的文献求助10
21秒前
彭于晏应助诚先生采纳,获得10
21秒前
七少爷完成签到 ,获得积分10
21秒前
21秒前
moyu123发布了新的文献求助10
22秒前
雯雯完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181532
求助须知:如何正确求助?哪些是违规求助? 4368481
关于积分的说明 13603244
捐赠科研通 4219672
什么是DOI,文献DOI怎么找? 2314180
邀请新用户注册赠送积分活动 1312904
关于科研通互助平台的介绍 1261591