Construction of an end‐to‐end regression neural network for the determination of a quantitative index sagittal root inclination

组内相关 矢状面 卷积神经网络 人工智能 计算机科学 锥束ct 相关系数 分割 人工神经网络 数学 模式识别(心理学) 计算机断层摄影术 再现性 统计 医学 机器学习 放射科
作者
Yixiong Lin,Mengru Shi,Dawei Xiang,Peisheng Zeng,Zhuohong Gong,Haiwen Liu,Quan Liu,Zhuofan Chen,Juan Xia,Zetao Chen
出处
期刊:Journal of Periodontology [Wiley]
卷期号:93 (12): 1951-1960 被引量:5
标识
DOI:10.1002/jper.21-0492
摘要

Abstract Background Immediate implant placement in the esthetic area requires comprehensive assessments with nearly 30 quantitative indexes. Most artificial intelligence (AI)‐driven measurements of quantitative indexes depend on segmentation or landmark detection, which require extra labeling of images and contain possible intraclass errors. Methods For the initial attempt, the method was tested on sagittal root inclination measurement. This study had developed an accurate and efficient end‐to‐end model incorporating a convolutional neural network (CNN) based on unlabeled cone‐beam computed tomography (CBCT) images for immediate implant placement diagnosis and treatment. The model took pretrained ResNeXt101 as the backbone and was constructed based on 2,920 CBCT images with corresponding angles of the tooth axis and bone axis. The performance of our CNN model was evaluated on a separate test set. Results Our model exhibited high prediction accuracy in sagittal root inclination measurements, as evidenced by the low mean average error of 2.16°, the high correlation coefficient of 0.915 to manual measurement, and the narrow 95% confidence interval shown by Bland‐Altman plots. The intraclass correlation coefficient further confirmed the measurement accuracy of our model was comparable with that of junior clinicians. The model took merely 0.001 seconds for each CBCT image, making it highly efficient. To better understand the model's quality, we visualized our end‐to‐end CNN model through Guided Backpropagation, Grad‐CAM, and Guided Grad‐CAM, and confirmed its effectiveness in region recognition. Conclusions We succeeded in taking the first step in constructing the end‐to‐end immediate implant placement AI tool through sagittal root inclination measurements without intermediate steps and extra labeling on images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
灵巧妙芙发布了新的文献求助10
4秒前
拾捌完成签到,获得积分10
4秒前
wk_sea完成签到,获得积分10
7秒前
x5kyi发布了新的文献求助30
8秒前
都会完成签到 ,获得积分10
9秒前
今后应助都是采纳,获得10
9秒前
西皮发布了新的文献求助10
9秒前
shining发布了新的文献求助10
11秒前
13秒前
我是老大应助jxy09156采纳,获得10
13秒前
JD.发布了新的文献求助10
18秒前
不爱吃醋完成签到,获得积分10
19秒前
思源应助11采纳,获得10
20秒前
20秒前
不配.应助迪迦奥特曼采纳,获得20
21秒前
22秒前
23秒前
王哪跑12关注了科研通微信公众号
24秒前
千寻发布了新的文献求助10
24秒前
义气雍发布了新的文献求助10
25秒前
JD.完成签到,获得积分20
25秒前
jxy09156发布了新的文献求助10
27秒前
搞怪书兰发布了新的文献求助10
29秒前
郑堰爻完成签到 ,获得积分10
30秒前
31秒前
Ava应助ZWW--AZIBs采纳,获得10
32秒前
35秒前
jxy09156完成签到,获得积分10
36秒前
36秒前
ZWW--AZIBs发布了新的文献求助10
39秒前
军军问问张完成签到,获得积分10
39秒前
LIN发布了新的文献求助10
41秒前
11发布了新的文献求助10
41秒前
无情代亦完成签到,获得积分20
43秒前
45秒前
46秒前
46秒前
车辆工程完成签到,获得积分10
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791830
捐赠科研通 2445993
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079