Construction of an end‐to‐end regression neural network for the determination of a quantitative index sagittal root inclination

组内相关 矢状面 卷积神经网络 人工智能 计算机科学 锥束ct 相关系数 分割 人工神经网络 数学 模式识别(心理学) 计算机断层摄影术 再现性 统计 医学 机器学习 放射科
作者
Yixiong Lin,Mengru Shi,Dawei Xiang,Peisheng Zeng,Zhuohong Gong,Haiwen Liu,Quan Liu,Zhuofan Chen,Juan Xia,Zetao Chen
出处
期刊:Journal of Periodontology [Wiley]
卷期号:93 (12): 1951-1960 被引量:6
标识
DOI:10.1002/jper.21-0492
摘要

Abstract Background Immediate implant placement in the esthetic area requires comprehensive assessments with nearly 30 quantitative indexes. Most artificial intelligence (AI)‐driven measurements of quantitative indexes depend on segmentation or landmark detection, which require extra labeling of images and contain possible intraclass errors. Methods For the initial attempt, the method was tested on sagittal root inclination measurement. This study had developed an accurate and efficient end‐to‐end model incorporating a convolutional neural network (CNN) based on unlabeled cone‐beam computed tomography (CBCT) images for immediate implant placement diagnosis and treatment. The model took pretrained ResNeXt101 as the backbone and was constructed based on 2,920 CBCT images with corresponding angles of the tooth axis and bone axis. The performance of our CNN model was evaluated on a separate test set. Results Our model exhibited high prediction accuracy in sagittal root inclination measurements, as evidenced by the low mean average error of 2.16°, the high correlation coefficient of 0.915 to manual measurement, and the narrow 95% confidence interval shown by Bland‐Altman plots. The intraclass correlation coefficient further confirmed the measurement accuracy of our model was comparable with that of junior clinicians. The model took merely 0.001 seconds for each CBCT image, making it highly efficient. To better understand the model's quality, we visualized our end‐to‐end CNN model through Guided Backpropagation, Grad‐CAM, and Guided Grad‐CAM, and confirmed its effectiveness in region recognition. Conclusions We succeeded in taking the first step in constructing the end‐to‐end immediate implant placement AI tool through sagittal root inclination measurements without intermediate steps and extra labeling on images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
黄文博发布了新的文献求助10
刚刚
1秒前
科研通AI5应助yaya采纳,获得10
2秒前
大蛋发布了新的文献求助10
4秒前
5秒前
wanci应助惠惠采纳,获得30
6秒前
KK发布了新的文献求助10
6秒前
樱桃发布了新的文献求助10
6秒前
9秒前
斯可发布了新的文献求助10
10秒前
12秒前
搜集达人应助有魅力的井采纳,获得10
12秒前
zhou完成签到,获得积分10
12秒前
科研通AI2S应助黄文博采纳,获得10
14秒前
乘风破浪完成签到 ,获得积分10
14秒前
peekaboo完成签到,获得积分10
14秒前
15秒前
思琦吖发布了新的文献求助10
15秒前
义气萝卜头完成签到 ,获得积分10
15秒前
Balance Man完成签到 ,获得积分10
21秒前
斯可完成签到,获得积分10
23秒前
小谦完成签到,获得积分20
24秒前
26秒前
26秒前
26秒前
再吃一颗苹果完成签到,获得积分10
27秒前
甜蜜的阳光完成签到 ,获得积分10
31秒前
31秒前
祗想静静嘚完成签到 ,获得积分10
31秒前
樱桃完成签到,获得积分10
32秒前
万能图书馆应助刘善行采纳,获得30
33秒前
科研小民工应助A_Caterpillar采纳,获得100
33秒前
Kyrie完成签到 ,获得积分10
34秒前
甄簿厝发布了新的文献求助10
35秒前
SciGPT应助专一的依秋采纳,获得30
38秒前
38秒前
Zzzzan发布了新的文献求助10
39秒前
41秒前
42秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792