Immersive on-the-job training module development and modeling users’ behavior using parametric multi-group analysis: A modified educational technology acceptance model

结构方程建模 过程(计算) 知识管理 计算机科学 工程类 心理学 操作系统 机器学习
作者
Samad M. E. Sepasgozar
出处
期刊:Technology in Society [Elsevier]
卷期号:68: 101921-101921 被引量:15
标识
DOI:10.1016/j.techsoc.2022.101921
摘要

An on-the-job-training approach is required for sharing firsthand knowledge or experience with students in various contexts such as medicine, arts, architectural design, archaeology, construction, mining, and civil engineering. Large classes of university students and numerous professionals can learn from best case practices as on-the-job training. However, the job is not often available, the best case practices are not accessible to everyone, and the construction field is hazardous, so it may not be safe for a large group of students to attend operating construction sites. The large size of classes and, currently, the COVID-19 pandemic is also hindering the application of authentic and case-based training. This paper presents the process of developing and implementing innovative virtual tour (VT) modules to support on-the-job training needs where the teaching approach is the case-based storytelling scenario. The paper shows how the VTs were utilized for students’ learning, and their behavior was examined to see if it could support the development of a novel virtual teaching acceptance model (VTAM) as a theoretical framework for measuring educational technology adoption. VTAM comprises an amalgamation of technology attributes and learning factors, including perceived usefulness, engagement, situated learning, immersion, social presence, perceived utility, information-rich sources, and perceived satisfaction. VTAM was validated by conducting a longitudinal three-year survey with the participation of 339 VT users and an interview of 31 users to triangulate the quantitative analysis outcomes. The survey data was analyzed by using structural equation modeling (SEM) and parametric multi-group analysis (PMGA), and the interview transcriptions were analyzed using coding techniques. The outcome shows that VTAM, accompanied by situated learning, immersion, and social presence, has the strongest impact on engagement which positively affects students' satisfaction. VTAM helps to understand the critical factors affecting the usefulness of immersive technologies in education. The outcome is crucial to virtual system developers and online education designers for understanding students’ behavior in implementing virtual technologies successfully.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Bigheart贝卡斯完成签到,获得积分10
4秒前
科研小哥完成签到,获得积分10
6秒前
7秒前
香菜完成签到 ,获得积分10
7秒前
火星上宛秋完成签到 ,获得积分10
9秒前
zhang完成签到 ,获得积分10
9秒前
9秒前
缓慢海蓝完成签到 ,获得积分10
10秒前
alei1203发布了新的文献求助10
12秒前
杰克李李完成签到,获得积分10
12秒前
8R60d8应助可爱小蝴蝶采纳,获得10
13秒前
刘桔完成签到,获得积分10
14秒前
无奈的凌寒完成签到,获得积分10
15秒前
愉快的冰萍完成签到 ,获得积分10
19秒前
马嘉懿完成签到 ,获得积分10
21秒前
马家辉完成签到,获得积分10
29秒前
chekd应助科研通管家采纳,获得10
29秒前
29秒前
英姑应助科研通管家采纳,获得10
29秒前
Liar应助科研通管家采纳,获得10
29秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
无花果应助科研通管家采纳,获得10
30秒前
脑洞疼应助科研通管家采纳,获得10
30秒前
香蕉觅云应助科研通管家采纳,获得10
30秒前
Liar应助科研通管家采纳,获得10
30秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
社恐Forza应助科研通管家采纳,获得10
30秒前
Clover04应助科研通管家采纳,获得10
30秒前
Ava应助ATYS采纳,获得10
30秒前
研友_VZG7GZ应助科研通管家采纳,获得10
30秒前
30秒前
31秒前
34秒前
Fin2046发布了新的文献求助10
36秒前
Damon完成签到 ,获得积分10
36秒前
gzgljh完成签到,获得积分10
39秒前
舒心的天完成签到 ,获得积分10
39秒前
TAO LEE完成签到 ,获得积分10
40秒前
十七完成签到 ,获得积分10
41秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795845
捐赠科研通 2447059
什么是DOI,文献DOI怎么找? 1301553
科研通“疑难数据库(出版商)”最低求助积分说明 626274
版权声明 601176