兰萨克
激光雷达
点云
障碍物
计算机科学
测距
计算机视觉
遥感
人工智能
云计算
树(集合论)
维数(图论)
实时计算
点(几何)
地理
电信
数学
图像(数学)
操作系统
数学分析
考古
纯数学
几何学
作者
M. Likhita,Nagendla Sai Sumanth,Advaith Ashwin Harish,Remidi Rohith Reddy,K. A. Nethravathi,Meena Kumari
出处
期刊:Algorithms for intelligent systems
日期:2022-01-01
卷期号:: 745-757
标识
DOI:10.1007/978-981-16-6460-1_57
摘要
Driving vehicles from one place to another safely and on time is not so easy. Situations like busy traffic and other health or weather conditions make it more complex, leading it to the development of the intelligent self-driving vehicles. Light detection and ranging (LiDAR) is the sensor that helps them detect the obstacles and avoid collisions. In this paper, a novel method is proposed for obstacle detection in autonomous vehicles. Open source 3D LiDAR point cloud data obtained when Velodyne HDL-64E LiDAR sensor is scanned in a real world environment is processed using Point Cloud Library (PCL). Random sample consensus (RANSAC) and K-Dimension tree algorithms are used for obstacle detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI